مدل آب زمین‌شناسی - مهندسی ناحیه فرونشست زمین در جنوب باختری تهران (دشت تهران - شهریار)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری زمین شناسی مهندسی، گروه زمین شناسی مهندسی، دانشگاه تربیت مدرس

2 استاد، گروه زمین‌شناسی مهندسی، دانشگاه تربیت مدرس

3 استادیار،‌ گروه زمین‌شناسی مهندسی دانشکده علوم پایه دانشگاه تربیت مدرس nikudelm@yahoo.com

4 دانشیار، پژوهشکده علوم زمین، سارمان زمین شناسی و اکتشافات معدنی کشور

چکیده

فرونشست زمین یکی از مهم‌ترین مخاطرات زمین‌شناسی است که ارتباطی تنگاتنگ با توسعه نواحی شهری دارد. برداشت شدید آب زیرزمینی که در اثر توسعه اقتصادی و رشد جمعیت ایجاد می‌شود به عنوان دلیل اصلی فرونشست زمین در بیشتر شهر‌های توسعه یافته بر روی آبخوان‌ها شناخته شده است، به ویژه در مناطقی از نواحی شهری که دارای جمعیت متراکم‌تر و توسعه اقتصادی بیشتر می‌باشند. اولین گام در مطالعات پایه‌ای این پدیده، تهیه مدل آب زمین‌شناسی- مهندسی است. این مدل در ضمن نمایش واحدهای آب زمین‌شناسی و مرزهای آن‌ها بیان کننده ویژگی‌های مکانیکی و فیزیکی آن‌ها نیز می‌باشد. برای تفکیک و انطباق لایه‌های خاک از لاگ‌های زمین‌شناسی و ویژگی‌های ژئوتکنیکی آن‌ها (حدود آتربرگ، رده‌بندی Unified و سرعت موج برشی) استفاده شده است. ثابت‌های الاستیک لایه‌های خاک (مدول برشی، مدول یانگ، مدول حجمی و نسبت پواسون) بر پایه دانسیته خاک برآورد شده و روابط تجربی متداول بدست آمده‌اند. سپس لایه‌های با ویژگی‌های مشابه در یک واحد آب زمین‌شناسی- مهندسی تعریف شده‌اند. بر پایه این مدل، سامانه آبخوان دشت جنوب باختری تهران چند لایه‌ای می‌باشد که دارای سه واحد آبخوان و سه واحد رسی با نفوذپذیری کم است. این پژوهش نشان می‌دهد که ناهمگنی لایه‌های خاک از یک ناحیه به ناحیه دیگر (در محدوده دشت تهران-شهریار، از شهریار تا اسلامشهر) تغییر می‌یابد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Engineering - hydrogeological model of land subsidence area in the southwest of Tehran (Tehran – Shahriyar plain)

نویسندگان [English]

  • Masood Mahmoudpour 1
  • Mashaallah Khamehchian 2
  • Mohammadreza Nikudel 3
  • Mohammadreza Ghasemi 4
1 PhD Student, Department of Engineering Gology, Tarbiat Modares University.
2 Professor, Department of Engineering Gology, Tarbiat Modares University,
3 Assistant professor, Department of Engineering Geology, Tarbiat Modares University, nikudelm@modares.ac.ir
4 Associate Professor, Earth Sceince Research Institute, Geological Survey of Iran.
چکیده [English]

Land subsidence is an important geological hazard closely related with the development of urban areas. Intensive groundwater extraction attributed to economic development, and population growth has been identified as the main cause of land subsidence in many cities worldwide, especially those in densely populated and economically developed urban areas. The first step in fundamental studies of this phenomenon is the preparation of the engineering - hydrogeological model. This model is a pictorial representation of the hydrogeological units and their boundaries, physical and mechanical characteristics.
For separation and correlation of soil layers is used the geological logs data and their geotechnical characteristics (atterberg limits, unified soil classification and shear wave velocity). Elastic constants of soil layers (shear modulus, young,s modulus, bulk modulus and passion,s ratio) based on the estimated density and conventional empirical formulas are obtained. Then, the layers that have similar characteristics in an engineering geological unit are defined. Based on this model, a multi-layered aquifer system in southwest plain of Tehran includes three aquifer units and three aquitard units. This study shows that the heterogeneity of soil layers is high. This feature will change from one region to another (Shahriyar-Tehran plain, Shahriyar to Eslamshahr).

کلیدواژه‌ها [English]

  • Engineering - hydrogeological model
  • Land subsidence
  • Multi-layered aquifer system
  • Tehran-Shahriyar plain
آیین‌ نامه طراحی ساختمان‌ها در برابر زلزله (استاندارد 2800 ایران)، کمیته دائمی بازنگری آیین‌نامه طراحی ساختمان‌ها در برابر زلزله، 1384، ویرایش سوم، مرکز تحقیقات ساختمان و مسکن.
سازمان زمین‌شناسی و اکتشافات معدنی کشور، 1387، گزارش مطالعات ژئوتکنیک در گستره دشت جنوب غربی تهران، 543 صفحه.
سازمان زمین‌شناسی و اکتشافات معدنی کشور، 1386، گزارش مطالعات لرزه‌شناسی در گستره جنوب ‌غرب تهران، تجزیه و تحلیل مایکروترمورها با روش آرایه، جلد چهارم، 426 صفحه.
مجیدی، علیرضا. میرزایی، مهدی. 1393، مدیریت به ‌هم پیوسته منابع آب با تلفیق مدل‌های عددی و یکپارچه، همایش مدیریت منابع و مصارف آب (با تکیه بر توسعه پایدار منطقه البرز مرکزی: چالش‌ها ،راهبردها و رویکردهای نو)؛ 30 صفحه.
Ahmed, A.A., 2009. Using lithologic modeling techniques for aquifer characterization and groundwater flow modeling of the Sohag area, Egypt, Hydrogeology Journal, 17:1189-1201.
Akin, M.K., Kramer, S.L., Topal, T., 2011. Emprical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey), Engineering Geology 119, 1-17.
Avila-Olivera, J.A., Garduno-Monroy, V.H., 2010. Conceptual model of land subsidence with structural control, Land subsidence, Associated hazards and the role of natural resources development(proceeding of EISOLS, Queretaro, Mexico, IAHS publ. 339, 195-197.
Brocher, T., 2005. Compressional and shear wave velocity versus Depthin the San Francisco Bay Area, California: Rules for USGS Bay Area Velocity Model 05.0.0., USGS open-file report 05-1317.
Cao, G., Han, D., Moser, J., 2013. Groundwater exploitation management under land subsidence constraint: Empirical evidence from the Hangzhou-Jiaxing-Huzhou plain, China, Environmental Management 51: 1109-1125.
CEN, 2004-BS EN, 1998-1: 2004. Eurocode 8: Design of structures for earthquake resistance- part 1: General rules, seismic actions and rules for buildings, European Committee for Standardization. ISBN: 0580458725.  
Galloway, D.L., 2013. Subsidence induced by underground extraction, in: Bobrowsky, P.T.  (Ed.), Encyclopedia of Natural Hazards, Springer, pp. 979-985.
Hoffmann, J., Galloway, D.L, Zebker, H.A., 2003. Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California. Water Resources Research, 39(2), 1031. 5(1-13).
Hu, R.L., 2006. Urban land subsidence in China, IAEG, Paper No. 786, 8P.
Hu, R.L., Yue, Z.Q., Wang, L.C., Wang, S.J., 2004. Review on current status and challenging issues of land subsidence in China, Engineering Geology, vol. 76, 65- 77.
Iyisan, R., 1996. Correlation between shear wave velocity and in-situ penetration test results. Digest 96, 371-374.
Kramer, S.L., 1996. Geotechnical Earthquake Engineering, Prentice-Hall, 653 p.
Liu, Y., Huang, H., 2013. Characterization and mechanism of regional land subsidence in the Yellow River Delta, China, Nat Hazards, 68: 687-709.
Ma, R., Wang, Y., Ma, T., Sun,  Z., Yan, S., 2006. The effect of stratigraphic  heterogeneity on areal distribution  of  land subsidence at Taiyuan, northern China, Environmental Geology, 50: 551-568.
Passadore, G., Monego, M., Altissimo, L., Sattani, A., Putti, M., Rinaldo, A., 2012. Alternative conceptual models and robustness of groundwater management scenarios in the multi-aquifer system of the Central Veneto Basin, Italy, Hydrogeology Journal, 20:419-433.  
Price, D.G., 2009. Engineering geology, Principles and practice, Springer-Verlag, 460 p.
Rieben, H., 1955. The geology of the Tehran plain, American Journal of Science, pp. 617-639.
Shi, X., Fang, R., Wu, J., Xu, H., Sun, Y., Yu, J., 2012. Sustainable development and utilization of groundwater resources considering land subsidence in Suzhou, China, Engineering Geology, 124: 77-89.
Tezcan, S.S., Keceli, A., Ozdemir, Z., 2006. Allowable bearing capacity of shallow foundations based on shear wave velocity, Journal of Geotechnical and Geological Engineering, 24: 203-218.
Vlahovic, T., Bacani, A., Posavec, K., 2009. Hydrogeochemical stratification of the unconfined Samobor aquifer (Zagreb, Croatia), Environmental Geology, 57:1707-1722.
Wang, G.Y., You, G.G., Shi, B., Wu, S.L., Wu, J.Q., 2010. Large Differential land subsidence and earth fissures in Jiangyin, China, Environmental Earth Science, 61:1085-1093.