مطالعه‌ی آزمایشگاهی تاثیر رسوب زیستی کربنات کلسیم (MICP) بر میزان نفوذپذیری ماسه‌های کربناته

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه یاسوج-دانشکده فنی و مهندسی

2 دانشگاه یاسوج؛ دانشکده کشاورزی؛ گروه علوم دامی

چکیده

رسوب زیستی کربنات کلسیم (MICP) روشی سازگار با محیط زیست و مناسب برای بهسازی خاک است. در این روش، اوره توسط آنزیم اوره آز ترشح شده از باکتری، هیدورلیز شده و کربنات کلسیم در حضور یون کلسیم تشکیل می شود. کربنات-کلسیم مانند پلی ذرات خاک را به یکدیگر متصل می کند و باعث بهبود مشخصه های خاک می شود. در مقاله حاضر تاثیر MICPبر میزان نفوذپذیری ماسه های کربناته در آزمایشگاه مطالعه شده است. عواملی نظیر غلظت محلول سیمانی، میزان تراکم خاک و مدت زمان تیمار بر میزان نفوذپذیری خاک مورد مطالعه قرار گرفته است. نتایج نشان داد غلظت بالاتر محلول سیمانی باعث کاهش بیشتر در نفوذپذیری نمونه‌ها می شود. نمونه های با تراکم کمتر، کاهش نفوذپذیری بیشتری را نشان دادند. هم چنین با گذشت زمان از 14 روز به 28 روز، فعالیت باکتریایی بسیار اندک بوده است. بیشترین میزان کاهش نفوذپذیری در نمونه ی سست، با غلظت محلول سیمانی 1 مولار و با مدت زمان عمل آوری 28 روز، برابر با 60 درصد بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Experimental Study of the Microbial Induced Carbonate Precipitation (MICP) Effect on the Permeability of Carbonated Sands

نویسندگان [English]

  • Zahra Heydari Naghdali 1
  • Mansour Parvizi 1
  • Masoud Rabeti Moghadam 1
  • Reza Naghiha 2
1 Yasouj University, Engineering Faculty
2 Yasouj University, Agricultural Faculty
چکیده [English]

Microbial induced carbonate precipitation (MCIP) is an environmentally and suitable method for soil remediation. In this method, urea is hydrolyzed by the urease enzyme, that is splashed from Sporosrcina Pasteurii bacteria. The calcium carbonate is formed in the presence of calcium ion. Calcium carbonate connects the soil particle like a bridge and improve its engineering characteristics. In the present research, the effect of MICP on the permeability of carbonated sand was investigated. The effect of factors such as concentration of the cementation solution, curing time and relative density on soil permeability have been studied. To consider the effect of different factors on the MICP performance, number of samples have been treated with MICP method and then constant head permeability test were conducted on the treated samples. the results show that as the concentration of cement solution was increased, the permeability of the samples was decreased. Loose Samples resulted in more decrease in permeability with respect to the dense samples. Also, bacterial activity was increased with time and after 14 days the variation in permeability was reduced. The highest rate of permeability reduction was around 60% for the sample prepared in loose state and cured with one molar concentration of cementation solution for 28 days

کلیدواژه‌ها [English]

  • MICP
  • Bactria
  • Calcium carbonate crystal
  • bio cementation
  • constant head permeability test
روشن بخت، ک.، خامه چیان، م.، ساجدی، ر.، نیکودل، م.، 1394. بهسازی خاک­های ماسه­ای با رسوب زیستی کربنات کلسیم و فاکتورهای موثر بر آن: مجله علمی- پژوهشی انجمن زمین شناسی ایران، جلد هشتم، شماره 1 و 2.
سرمست، م.، فرپور، م.، سرچشمه پور، م.، کریمیان اقبال، م.، 1393. تاثیر کلسیت زیستی بر برخی ویژگی­های فیزیکی خاک­های شنی: مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، سال هجدهم، شماره شصت و هشتم.
Al Qabany, A., and Soga, K., 2013. Effect of chemical treatment used in MICPon engineering properties of cemented soils: Géotechnique, 63(4): 331–339.
Cheng, L., Shahin, M. A., and Cord-Ruwisch, R., 2014. Bio-cementation of sandy soil using microbially induced carbonate precipitation for marine environments: Géotechnique, 64(12): 1010–1013.
Chu, J., Stabnikov, V., Ivanov, V., 2012. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil: Geomicrobiology Journal, 29(6):544-549.
DeJong, J. T., M. B. Fritzges, and K. Nusslein. 2006. Microbially induced cementation to control sand response to undrained shear: Journal of Geotechnical and Geoenvironmental Engineering, 132 (11): 1381–1392.
DeJong, J. T., Mortensen, B. M., Martinez, B. C. & Nelson, D. C.2010.Bio-mediated soil improvement.Ecol. Engng 36, No. 2,197–210.
Deng, W., Wang, Y., 2018. Investigating the factors affecting the properties of coral sand treated with microbially induced calcite precipitation: Advances in civil Engineering(8):1-6 
El Mountassir, G., Minto, J. M., Van Paassen, L. A., Salifu, E., Lunn, R. J., 2018.  Chapter Two - Applications of Microbial Processes in Geotechnical Engineering: Advances in Applied Microbiology,104: 39-91.
Gowthaman, S., Mitsuyama, Sh., Nakashima, K., Komatsu, M., Kawasaki, S., 2019. Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: A feasibility study on Hokkaido expressway soil, Japan: Soils and Foundations, Available online 6 March 2019.
Metayer-Leverl, G. L., Castanier, S., Orial, G., Loubière, J. F.,  Perthuisot, & J. P., 1999. Applications of  bacterialcarbonatiogenesis to the protection and regeneration of  limestone in buildings and historic patrimony: Sedimentary Geology, 126 (1–4): 25–34.
Mitchell, J. K. and Santamarina, J. C., 2005. Biological considerations in geotechnical engineering: J Geotech GeoenvironEng, 131(10): 1222-1233.
Mujah, D., Shahin, M. A., and Cheng, L., 2016. State-of-the-art review of bio-cementation by microbially induced calcite precipitation (MICP) for soil stabilization: GeomicrobiologyJournal.34 (6): 524-537.
Okwadha, G. D. & Li, J., 2010. Optimum conditions for microbial carbonate precipitation: Chemosphere 81, No. 9: 1143–1148.
Rebata-Landa, V., 2007. Microbial activity in sediments: Effects on soil behavior: Doctoral dissertation, Georgia Institute of Technology, Atlanta, GA.
Smith, A., Pritchard, M., Edmondson, A., Bashir, Sh., 2017. The reduction of the permeability of a lateritic soil through the application of microbially induced calcite precipitation: Natural Resources (8): 337-352
Soon, N. W., Lee, L. M. ,Khun, T. C. , and Ling, H. S., 2013. Improvements in engineering properties of soils through microbial-induced calcite precipitation: KSCE Journal of Civil Engineering 17 (4): 718–728.
Van Paassen , L. A., 2009. Biogrout (ground improvement by microbially induced carbonate precipitation):  Doctoral dissertation ,  Delft Univ. ofTechnology, Delft, The Nethelands.
Van Paassen, L. A., Ghose, R., van der Linden, T. J. M., van der Star, W. R.L., and van Loosdrecht, M. C. M.,2010. Quantifying biomediated ground by improvement ureolysis: Large-scale biogrout experiment: J. Geotech. Geoenviron. Eng., 10.1061: 1721–1728.
Whiffin, V. S., 2004. Microbial CaCO3 precipitation for the production of biocement: PhD Thesis, MurdochUniversity, Australia p. 162.
Whiffin, V. S., Van Paassen, L. A., and Harkes, M. P., 2007. Microbialcarbonate precipitation as a soil improvement technique: Geomicrobiol.J., 24(5): 417–423.
 
Xiao, P., Liu, H., Xiao, Y., Stuedlein, A. W., Evans, T. M., 2018. Liquefaction resistance of biocemented calcareous sand: Soil Dynamic and Earthquake Engineering: 9-19
Zhang, H. C., 2010. Experimental research of microbial-induced clogging in sands (in Chinese). Dissertation for the Master Degree. Beijing: Tsinghua University.