تاثیر رس کائولینیت بر مقاومت خاک ماسه ای در برابر روانگرایی، مطالعه موردی شهرستان گرگان در شمال ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس - دانشکده علوم پایه - گروه زمین شناسی مهندسی

2 استاد گروه زمین شناسی مهندسی دانشگاه تربیت مدرس

چکیده

در این مقاله پس از نمونه گیری از خاک ماسه‌ای منطقه و انجام آزمایشات پایه ژئوتکنیکی بر روی آن، با انجام یک سری آزمایش سه محوری سیکلی (دوره ای) اثر افزودن این ریزدانه بر پتانسیل روانگرایی خاک ماسه ای مورد مطالعه قرار گرفت. نتایج آزمایشات سه محوری سیکلی نشان داد که خاک ماسه ای مورد مطالعه پس از 54 سیکل بارگذاری روانگرا گردیده که نشان از مستعد بودن آن برای روانگرایی است. همچنین با افزودن ریزدانه به بافت خاک در درصدهای پایین مقاومت خاک در برابر روانگرایی کاهش یافته است که می تواند ناشی از شکسته شدن پیوند بین دانه‌های خاک توسط ذرات ریزدانه بوده باشد. اما با افزایش درصد ریزدانه مقاومت خاک در برابر روانگرایی افزایش می‌یابد که دلیل آن چیره شدن ریزدانه در بافت خاک و ایجاد چسبندگی در آن است. این روند کاهشی و سپس افزایشی در مقاومت خاک در برابر روانگرایی با افزودن ریزدانه در مطالعات دیگر نیز دیده شده است که به مقدار ریزدانه‌ای که پس از آن مقاومت خاک رو به افزایش میگذارد، ریزدانه حدی گفته می شود. نتایج این مقاله نشان داد که برای خاک ماسه ای شهرستان گرگان مقدار ریزدانه حدی خاک رس کائولینیت مقدار 12 درصد وزنی می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of Kaolinite clay on the liquefaction resistance of the sandy soil; case study of the Gorgan city in north of Iran

نویسندگان [English]

  • Rasool Yazarloo 1
  • Mashallah Khamechian 2
  • Mohammad Reza Nikoudel 1
1 Department of Engineering Geology, Faculty of Basic Sciences, Tarbiat Modares University
2 Prof. of engineering Geology Tarbiat Modares University
چکیده [English]

In this paper by performing of a series of triaxial cyclic test the effect of adding fines on the liquefaction potential of sandy soil are studied, after sampling of the soil and doing basic geotechnical tests on the samples. The result of triaxial cyclic tests showed that pure sandy soil after 54 cycle of loading is liquefied which prove the studied soil is liquefaction prone. Moreover it can be inferred from the test results that in low fine percent liquefaction resistance is decrease that can be attributed to breaking the coarse grain’s bond by fine particles. While by increasing the percent of the Kaolinite clay the soil liquefaction resistance is increase which can be explain by domination of the fine in soil structure and making soil more cohesive. This decreasing and increasing trend in soil resistance against liquefaction by adding fines is observed in several other studies which the percent of the fine that change the trend is named threshold fine amount. The result of the paper has been shown for studied sand of Noor city the threshold fine amount of Kaolinite clay is 12 weight percent.

کلیدواژه‌ها [English]

  • Sandy Soil
  • triaxial cyclic test
  • Liquefaction
  • gorgan city
قاسمی، م.، محمدخانی، ح.، یداللهی، ع.، 1386. چینه شناسی و زمین شناسی کواترنری دشت هیرکان(دشت گرگان)، بیست و ششمین گردهمایی علوم زمین.
یازرلو، رسول، 1395. مطالعات زمین شناسی مهندسی خاک های شهرهای گرگان و گنبدکاووس با تاکید بر تاثیر نانومواد بر مقاومت روانگرایی، رساله دکتری، دانشگاه تربیت مدرس، گروه زمین شناسی.
 
Amini, F., Qi, G.Z., 2000. Liquefaction testing of stratified silty sands. Journal of Geotechnical and Geoenvironmental Engineering, 126: 208-217.
Ansal, A.M., Erken, A., 1996. Post-testing correction procedure for membrane compliance effects on pore pressure. Journal of Geotechnical Engineering, ASCE, 122(1): 27–38.
ASTM D4253-00, 2006. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken.
ASTM D4254-16, 2006. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International, West Conshohocken.
ASTM D5311-13, 2006. Standard test method for load controlled cyclic triaxial strength of soil. ASTM International, West Conshohocken.
Azzouz, A.S., Malek, A.M., Baligh, M.M., 1989. Cyclic behavior of clays in undrained simple shear. Journal of Geotechnical Engineering, 115(5): 637–657.
Bouferra, R., Shahrour, I., 2004. Influence of fines on the resistance to liquefaction of a clayey sand. Proceedings of the Institution of Civil Engineers - Ground Improvement, 8(1): 1–5.
Boulanger, R., Wilson, D., Idriss, I., 2012. Examination and reevalaution of SPT-based liquefaction triggering case histories. Journal of Geotechnical and Geoenvironmental Engineering, 138 (8): 898-909.
Boulanger, R.W., Meyers, M.W., Mejia, L.H., Idriss, I.M., 1998. Behavior of a fine-grained soil during the Loma Prieta earthquake. Canadian Geotechnical Journal, 35(1): 146–158.
Chang N.Y., and Yeh S.T., Kaufman L.P., 1982. Liquefaction potential of clean and silty sands, Proceedings of the Third International Earthquake Microzonation Conference, Seattle, USA, 2, 1017–1032.
El Hosri, M.S., Biarez, H., Hicher, P.Y., 1984. Liquefaction characteristics of silty clay. Proceedings of the Eighth World Conference on Earthquake Engineering, Prentice-Hall, Englewood Cliffs, New Jersey, Vol. III, pp 277-284.
Goudarzy, M., Rahemi, N., Rahman, M.M., Schanz, T., 2017. Predicting the maximumshear modulus of sands containing non-plasticfines. Journal of Geotechnicaland Geoenvironmental Engineering 143 (9), 1-5.
Gratchev, I.B., Sassa, K., Osipov, V.I., and Sokolov, V.N., 2006. The liquefaction of clayey soils under cyclic loading. Engineering Geolology, 86(1): 70–84.
Hyodo, M., Hyde, A.F.L., Yamamoto, Y., and Fujii, T., 1999. Cyclic shear strength of undisturbed and remoulded marine clays. Soils Foundation, 39(2): 45–58.
Ishihara, K., 1993. Liquefaction and flow failure during earthquakes. Géotechnique, 43(3): 351–451.
Keramatikerman, M., Chegenizadeh, A., Yilmaz, Y., Nikraz, H., 2018. Effect of lime treatment on static liquefaction behavior of sand-bentonite mixtures. Journal of Materials in Civil Engineering, 30 (11): 06018017.
Khoshravan, H. 2000. Internal paper. Morphological Zone of the Caspian Sea Southern Coasts, Caspian Sea National Research and Study Center, 56: 45-76. 
Khoshravan, H., Barimani, H., 2012. Seismic vulnerability, Caspian Sea southern coast. Quaternary International, Volume 261, 30 May 2012, Pages 9-13.
Koester J.P., 1994. The influence of fine type and content on cyclic strength, ground failures under seismic conditions, Geotechnical Special Publication, ASCE, No. 44, pp. 17-33.
Kramer Steven L., 1996. Geotechnical Earthquake Engineering. Prentice Hall Publication.
Lefebvre, G., Pfendler, P., 1996. Strain rate and preshear effects in cyclic resistance of soft clay.  Journal of Geotechnical Engineering, 1221: 21–26.
Liang R; Bai X; Wang J., 2000. Effect of clay particle content on liquefaction of soil. 12th World Conference on Earthquake Engineering, Auckland, New Zealand, pp. 1560-1564.
Maurer, B., Green, R., Cubrinovski, M., Bradley, B., 2014. Evaluation of the liquefaction potential index for assessing liquefaction hazard in Christchurch, New Zealand. Journal of Geotechnical and Geoenvironmental Engineering 140 (7), 04014032.
Nguyen, H.B.K., Rahman, M.M., Fourie, A.B., 2018. Characteristic behaviour ofdrained and undrained triaxial tests: a DEM study. Journal of Geotechnical andGeoenvironmental Engineering.
Polito, C.P., 1999. The Effects of Non-Plastic and Plastic Fines on the Liquefaction of Sandy Soil. Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University.
Polito, C.P., Martin, J.R., 2001. Effects of nonplastic fines on the liquefaction resistance of sands. Journal of Geotechnical and Geoenviromental Engineering, 127(5): 408
Prakash, S., Sandoval, J.A.A., 1992. Liquefaction of low plasticity silts. Soil Dynamics and Earthquake Engineering, 11(7): 373–379.
Rabbi, A.T.M.Z., Rahman, M.M., Cameron, D.A., 2018. Undrained behavior of siltysand and the role of isotropic and K0 consolidation. Journal of Geotechnical andGeoenvironmental Engineering 144 (4), 04018014.
Robertson, P. K., and Wride, C. E., 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, Ottawa, 35(3), 442–459.
Sabbar, A., A. Chegenizadeh, and H. Nikraz, 2016. A Review of the experimental studies of the cyclic behaviour of granular materials: Geotechnical and pavement engineering. Australian Geomechanics Journal, 51(2): p. 89-103.
Seed, H. B., Idriss, I. M., 1982. Ground motions and soil liquefaction during earthquakes, Earthquake Engineering Research Institute Monograph, Oakland, California.
Seed, H.  B., Tokimatsu, K., Harder, L.  F., and Chung, R.  M., 1985. The influence of SPT procedures in soil liquefaction resistance evaluations, Journal of Geotechnical Enineering, ASCE, 111(12): 1425–1445.
Seed, H.B., Idriss, I.M., 1971. Simplified procedure for evaluating soil liquefaction potential, Journal of Soil Mechanics and Foundation Division, ASCE, 97: 249–1273.
Seed, H.B., Lee, K.L., 1966, Liquefaction of saturated sands during cyclic loading, Journal of Soil Mechanics and Foundations, 92, 105–134.
Terzaghi, K., Peck, R.B., Mesri, G., 1996. Soil Mechanics in Engineering Practice, Third edition, John Wiley and Sons Publications, New York.
Terzhagi, K., Peck, R.B., 1948. Soil Mechanics in Engineering Practice, John Wiley and Sons Publications, New York.
Townsend, F., 1978. A Review Of Factors Affecting Cyclic Triaxial Tests, Dynamic Geotechnical Testing, ASTM STP 654, American Society for Testing and Materials, pp: 356-383.
Tronsco, J.H., Verdugo R., 1985. Silt content and dynamic behavior of tailing sands, Proceedings of Twelfth International Conference on Soil Mechanics and Foundation Engineering, San Francisco, USA, pp: 1311-1314.
Youd, T.L., Idriss, I.M., Ronald, D.A., 2001. Liquefaction resistance of soils: Summary report from the 1996 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 127(10): 817-833.
Zergoun, M., and Vaid, Y.P. 1994. Effective stress response of clay to undrained cyclic loading.” Canadian Geotechnical Journal, 31: 714–727.