ارزیابی اثر شکل و موقعیت بارگذاری بر پایداری شیب مسلح شده با ژئوتکستایل با استفاده از مدل سازی سانتریفوژ

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه قم، گروه مهندسی عمران

2 زمین شناسی مهندسی دانشگاه تهران

3 گروه مهندسی عمران، دانشگاه قم، قم، ایران

چکیده

خاک مسلح ژئوسنتتیکی به عنوان یکی از روش‌های سریع و اقتصادی پایدارسازی شیروانی ها و احداث دیوارهای حائل شناخته می‌شود. در این تحقیق با استفاده از مدلسازی سانتریفوژ، رفتار دیوارهای خاک مسلح شده با ژئوتکستایل با ارتفاع نسبتا بلند و شیب (5 قایم به 1 افقی) تحت اثر سربار خارجی مورد ارزیابی قرار گرفته است. بدین منظور 3 نمونه شیب خاک مسلح به ارتفاع 35 سانتی متر با مقیاس 1:30 و یک مدل بدون مسلح کننده ساخته و پس از رسیدن به شتاب g30 در دستگاه سانتریفوژ تحت بارگذاری قرار گرفت. نتایج بدست آمده نشان داد، ظرفیت باربری پی های قرار گرفته بر روی کوله های خاک مسلح ارتباط کاملا مستقیمی با شکل پی داشته و برای پی های با عرض یکسان هرچقدر شکل پی از نوع مربع به نوع نواری تغییر یابد (طول پی افزایش یابد) از میزان باربری نهایی آن کاسته خواهد شد. با بررسی المان های مسلح کننده خاک در لایه های مختلف، مشخص گردید که بیشترین میزان خرابی ژئوتکستایل مربوط به حالتی است که تحت بار نواری بوده و کمترین تخریب مربوط به بارگذاری با سطح مقطع مربعی می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of the effect of shape and loading position on the stability of geotextile-reinforced slope using centrifuge modeling

نویسندگان [English]

  • Behzad Moeen 1
  • Ali M. Rajabi 2
  • Mahdi Khodaparast 3
1 Civil Engineering Department, University of Qom, Qom, Iran
2 Engineering Geology, university of Tehran
3 Civil Engineering Department, University of Qom, Qom, Iran
چکیده [English]

Geosynthetic reinforced soil is recognized as one of the fastest and most economical ways to slopes and retaining walls. In this research, using centrifugal modeling, the behavior of soil walls reinforced with relatively high height and slope geotextiles (1H : 5V) under the influence of surcharge was evaluated. For this purpose, 3 models of reinforced soil slope with a height of 35 cm with a scale of 1:30 and an unreinforced soil slope were made and loaded on the centrifuge during acceleration of 30 g. The results showed that the bearing capacity of the foundations on the reinforced soil slope was directly related to the shape of the foundations and for the same widths as the square shape changed to the strip type (increasing the length of the foundations) from the final load will be reduced. Through the investigation of soil reinforcing elements at different depths in terms of failure and elongation, it was revealed that regarding the elongation and failure of geotextiles and the depth of failure for footings with equal widths the maximum value is associated with strip footing and the minimum value is associated with square footing.

کلیدواژه‌ها [English]

  • Reinforced soil slope
  • Geotextile
  • Centrifuge modeling
  • Load geometry
جلیل زاده، ز.، حاجی علیلوی بناب، م.، کاتبی، ه.، 2018. بررسی آزمایشگاهی دیوار گود پایدار شده با ترکیب میخ‌کوبی و مهارگذاری. نشریه انجمن زمین شناسی مهندسی ایران 11(2)، 33-44.

Aklil, P., Wu, W., 2013a. Centrifuge model tests on foundation on geosynthetic reinforced slope [D]. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris 2013

Aklil, P., Wu, W., 2013b. Centrifuge model tests on foundation on geosynthetic reinforced slope [D]. Vienna, Austria: University of Natural Resources and Life Sciences.

Arriaga, F., 2004. Responses of geosynthetic-reinforced structures under working stress and failure conditions, University of Colorado at Boulder.

Bathurst, R., Walters, D., Vlachopoulos, N., Burgess, P., Allen, T., 2000. Full scale testing of geosynthetic reinforced walls, Advances in transportation and geoenvironmental systems using geosynthetics, pp. 201-217.

Bolton, M., Pang, P., 1982. Collapse limit states of reinforced earth retaining walls. Geotechnique 32(4), 349-367.

Bolton, M.D., Choudhury, S.P., Pang, P., 1978. Reinforced earth walls: a centrifugal model study, Proceedings of Symposium on Earth Reinforcement. ASCE: American Society of Civil Engineers, pp. 252-281.

Christopher, B.R., Elias, V., 1997. Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines, United States. Federal Highway Administration.

Elgamal, A.-W., 1991. Design, construction and operation of 100 g-ton centrifuge at RPI. Centrifuge 91, 27-34.

Fannin, R., Hermann, S., 1990. Performance data for a sloped reinforced soil wall. Canadian Geotechnical Journal 27(5), 676-686.

Goodings, D., Santamarina, J., 1989. Reinforced earth and adjacent soils: centrifuge modeling study. Journal of geotechnical engineering 115(7), 1021-1025.

Guler, E., Cicek, E., Demirkan, M.M., Hamderi, M., 2012. Numerical analysis of reinforced soil walls with granular and cohesive backfills under cyclic loads. Bulletin of Earthquake Engineering 10(3), 793-811.

Güler, E., Goodings, D.J., 1992. Centrifuge models of clay-lime reinforced soil walls, Grouting, Soil Improvement and Geosynthetics. ASCE, pp. 1249-1260.

Guler, E., Ocbe, C., 2003. Centrifuge and full scale models of geotextile reinforced walls and several case studies of segmental retaining walls in Turkey. Emirates J Eng Res 8(1), 15-23.

Haza, E., Gotteland, P., Gourc, J.-P., 2000. Design method for local load on a geosynthetic reinforced soil structure. Geotechnical & Geological Engineering 18(4), 243-267.

JONES, J., 2002. Guide to Reinforced Fill Structure And Slope Design.

Khoshnevivis Ansari, A., 2015. Three dimensional stability of reinforced soil bridge abutments by upper bound limit analysis method, University of Tehran.

Madabhushi, G., 2014. Centrifuge modelling for civil engineers. CRC Press.

Matichard, M., Blivet, J., Garnier, J., Delmas, P., 1988. Etude en grandes deformationes d'ouvrages de soutenement renforces par geotextile, International Conference on Geotechnical Centrifuge Modelling, Jean Francois Corte, ed. Paris pp. 273-281.

Matsuo, O., Yokoyama, K., Saito, Y., 1998. Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls. Geosynthetics International 5(1-2), 97-126.

Mitchell, J., Jaber, M., Shen, C., Hua, Z., 1988. Behavior of reinforced soil walls in centrifuge model tests, In: Proceedings of Centrifuge '88, Paris, France, pp. 259-271.

Moein, B., Bazargan, J., Derakhshani, A., 2015. Evaluate the behavior of geosynthetic reinforced soil walls in centrifuge modeling and large-scale model under surcharge, 10TH INTERNATIONAL CONGRESS ON CIVIL ENGINEERING. University of Tabriz - Faculty of Civil Engineering.

Porbaha, A., Goodings, D., 1994. Geotextile reinforced cohesive slopes on weak foundations, Proceedings of Centrifuge, pp. 623-628.

Rojhani, M., Moradi, M., Galandarzadeh, A., Takada, S., 2012. Centrifuge modeling of buried continuous pipelines subjected to reverse faulting. Canadian Geotechnical Journal 49(6), 659-670.

Sommers, A., Viswanadham, B., 2009. Centrifuge model tests on the behavior of strip footing on geotextile-reinforced slopes. Geotextiles and Geomembranes 27(6), 497-505.

Taylor, R.e., 2003. Geotechnical centrifuge technology. CRC Press.

Thamm, B., Krieger, B., Krieger, J., 1991. Full scale test on a geotextile reinforced retaining structure: Proc 4th International Conference on Geotextiles, Geomembranes and Related Products, The Hague, 28 May–1 June 1990 V1 P3–8. Publ Rotterdam: AA Balkema, 1990, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, pp. A384.

TSR101, 2013. General technical specifications of the road 101, Geosynthetics in road construction. Plan and Budget organization, president of the Islamic Republic of Iran, Tehran, IRAN.

Wichter, L., Risseeuw, P., Gay, G., 1986. Large scale test on bearing behaviour of a woven reinforced earth, Proceeding of the 3rd International Conference on Geotextiles, Vienna, Austria, pp. 1073-1078.

Won, M.-S., Kim, Y.-S., 2007. Internal deformation behavior of geosynthetic-reinforced soil walls. Geotextiles and Geomembranes 25(1), 10-22.

Won, M., Kim, Y., Lee, K., 2008. A study on the deformation behavior of laboratory geosynthetics reinforced soil walls, Geosynthetics in Civil and Environmental Engineering. Springer, pp. 291-294.

Wong, K., Broms, B., Chandrasekaran, B., 1994. Failure modes at model tests of a geotextile reinforced wall. Geotextiles and Geomembranes 13(6-7), 475-493.

Wood, D.M., 2003. Geotechnical modelling, 1. CRC Press.

Yoo, C., Kim, S.-B., 2008. Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load: full-scale load test and 3D finite element analysis. Geotextiles and Geomembranes 26(6), 460-472.

Zohdi Tavassoli, H., 2010. Three dimensional Analysis of reinforced soil slopes with upper bound limit analysis method using laminar blocks, University of Tehran.

Zornberg, J.G., 1994. Performance of geotextile-reinforced soil structures, University of California, Berkeley.

Zornberg, J.G., Arriaga, F., 2003. Strain distribution within geosynthetic-reinforced slopes. Journal of Geotechnical and Geoenvironmental Engineering 129(1), 32-45.

Zornberg, J.G., Sitar, N., Mitchell, J.K., 1998. Performance of geosynthetic reinforced slopes at failure. Journal of Geotechnical and Geoenvironmental Engineering 124(8), 670-683.