ارزیابی پتانسیل واکنش زایی سنگدانه های مختلف بر پایه مطالعات پتروگرافی و مقایسه آن با آزمون های شیمیایی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس، گروه زمین شناسی مهندسی

2 دانشگاه تربیت مدرس تهران دانشکده علوم پایه

3 دانشگاه تربیت مدرس، دانشکده علوم، گروهزمین شناسی

4 دانشگاه مکواری- دانشکده علوم زمین

5 دانشگاه مکواری سیدنی

6 دانشگاه مکواری، استرالیا

چکیده

چکیده:
دوام بتن متأثر از عوامل مختلفی مانند اجزا تشکیل‌دهنده آن، عمل‌آوری، محیط قرارگیری و مدت سرویس‌دهی می‌باشد. واکنش زایی قلیایی ایجادشده درون بتن و فشار انبساطی و ترک‌دار شدن ناشی از واکنش مخرب تشکیل ژل سیلیسی-قلیایی می‌تواند به کوتاه‌تر شدن عمر بتن منجر شود. واکنش زایی قلیایی یک واکنش تدریجی می‌باشد که می‌تواند بین محلول منفذی قلیایی بتن و انواع مختلفی از سنگ‌دانه‌ها روی دهد. شناخت رفتار سنگ‌دانه به‌عنوان اصلی‌ترین تشکیل‌دهنده بتن در شناخت مکانیسم واکنش زایی قلیایی، کاهش پتانسیل واکنش زایی و حتی جلوگیری از آن ضروری می‌باشد. همه سنگ‌دانه‌ها در برابر واکنش‌زایی‌ قلیایی آسیب‌پذیر نمی‌باشند بنابراین شناسایی سنگ‌دانه‌های آسیب‌پذیر و انتخاب سنگ‌دانه‌های با واکنش زایی کمتر در ساخت بتن می‌تواند درنهایت منجر به کم شدن و جلوگیری از خسارت های ناشی از واکنش زایی قلیایی شود. هدف این تحقیق ارزیابی آسیب‌پذیری چهار سنگ‌دانه مورداستفاده در بتن شامل: گرانیت ، ریوداسیت، آهک و دولومیت می‌باشد. این مطالعه تحت شرایط تسریع شده بر اساس استاندارد ASTM C1260 و شرایط دمای اتاق انجام شد. آنالیز نمونه‌ها با استفاده از میکروسکوپ الکترونی همراه با پراش کننده انرژی (SEM/EDX)، میکروسکوپ نوری، آنالیزهای XRD و XRF انجام شد. نتایج این تحقیق نشان داد که سنگ‌دانه‌های ریوداسیتی و آهکی دارای پتانسیل واکنش زایی می‌باشند درحالی‌که سنگ‌دانه‌های دولومیتی و گرانیتی موردمطالعه فاقد واکنش زایی بوده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

The evaluation of reaction potential of different aggregates based on petrographic studies and comparison with chemical tests.

نویسندگان [English]

  • Pezhman Kazemi 1
  • mohammadreza nikudel 2
  • Mashaelah khamechian 3
  • Simon Martin Clark 4
  • Shima Taheri 5
  • paritosh giri 6
1 Tarbiat Modares University, Department of engineering geology
2 Tarbiat Modares University of Tehran
3 tarbiat modares university
4 Macquarie University of Sydney, Earth and science Faculty
5 Macquarie University of Sydney
6 Macquarie university, australia
چکیده [English]

Abstract: The durability of concrete is affected by various factors including its ingredients, workmanship, environment, working life, and so on. The alkali reaction within the concrete can shorten its lifespan due to the expansive pressure build up and cracking caused by the deleterious action of alkali reaction by-products. The alkali reaction is a gradual reaction that can happen between the alkaline pore solution of the concrete and various types of aggregates. Understanding the behavior of the aggregate, as the main reactive component, is thus essential in understanding of the reaction mechanism, reducing the alkali reaction potential or even preventing it. Not all aggregates are susceptible to alkali reaction. Therefore, detecting susceptible aggregates and selecting the ones with low levels of reactive materials, can eventually help to minimize and mitigate alkali reaction problems. The aim of this research was to assess the susceptibility of four commonly used aggregates in constructing projects: Granite, Rhyodacite, Limestone and Dolomite. The study was performed under accelerated conditions in accordance with the ASTM test method C1260 and ambient condition (room temperature).specimens were analyzed using Scanning Electron Microscopy (SEM),X-ray Diffraction (XRD) and Light Microscopy. Limestone and Rhyodacite aggregates, were found to be susceptible to expansion reaction.

کلیدواژه‌ها [English]

  • Alkali reaction
  • concrete Aggregate
  • Accelerated Test
  • petrographic studies
Alonso, E., Martınez, L., 2003. The role of environmental sulfur on degradation of ignimbrites of the Cathedral in Morelia, Mexico. Build. Environ. 38, 861–867.
Broekmans, M.A.T.M., 2004. Structural properties of quartz and their potential role for ASR. Mater. Charact. 53, 129–140.
Chatterji, S., Thaulow, N., Jensen, A.D., 1989. Studies of alkali-silica reaction. Part 5. Verification of a newly proposed reaction mechanism. Cem. Concr. Res. 19, 177–183.
Dähn, R., Arakcheeva, A., Schaub, P., Pattison, P., Chapuis, G., Grolimund, D., Wieland, E., Leemann, A., 2016. Application of micro X-ray diffraction to investigate the reaction products formed by the alkali–silica reaction in concrete structures. Cem. Concr. Res. 79, 49–56.
French, W.J., 1991. Concrete petrography: a review. Q. J. Eng. Geol. Hydrogeol. 24, 17–48.
Hobbs, D.W., 1988. Alkali-silica reaction in concrete. Thomas Telford Publishing.
Jen, G., Hay, R., Ostertag, C.P., 2019. Multi-scale evaluation of hybrid fiber restraint of alkali-silica reaction expansion in concrete. Constr. Build. Mater. 211, 1117–1126.
Katayama, T., 1992. A critical review of carbonate rock reactions—Is their reactivity useful or harmful. In: Proceeding of the 9th International Alkali–Aggregate Reactions Conference, London, Concrete Society, Slough, Publ. CS-104. pp. 508–518.
Katayama, T., 2004. How to identify carbonate rock reactions in concrete. Mater. Charact. 53, 85–104.
Kurtis, K.E., Monteiro, P.J.M., Brown, J.T., Meyer-Ilse, W., 1998. Imaging of ASR gel by soft X-ray microscopy. Cem. Concr. Res. 28, 411–421.
Lindgård, J., Nixon, P.J., Borchers, I., Schouenborg, B., Wigum, B.J., Haugen, M., Åkesson, U., 2010. The EU “PARTNER” Project—European standard tests to prevent alkali reactions in aggregates: final results and recommendations. Cem. Concr. Res. 40, 611–635.
López-Arce, P., García-Guinea, J., 2005. Weathering traces in ancient bricks from historic buildings. Build. Environ. 40, 929–941.
Lukschová, Š., Přikryl, R., Pertold, Z., 2009. Evaluation of the alkali–silica reactivity potential of sands. Mag. Concr. Res. 61, 645–654.
Malvar, L.J., Cline, G.D., Burke, D.F., Rollings, R., Sherman, T.W., Greene, J.L., 2002. Alkali-silica reaction mitigation: state of the art and recommendations. Mater. J. 99, 480–489.
Min, D., Mingshu, T., 1993. Mechanism of dedolomitization and expansion of dolomitic rocks. Cem. Concr. Res. 23, 1397–1408.
Murlidhar, B.R., Mohamad, E.T., Armaghani, D.J., 2016. Potential alkali silica reactivity of various rock types in an aggregate granite quarry. Measurement 81, 221–231.
Peterson, K., Gress, D., Van Dam, T., Sutter, L., 2006. Crystallized alkali-silica gel in concrete from the late 1890s. Cem. Concr. Res. 36, 1523–1532.
Rajabipour, F., Giannini, E., Dunant, C., Ideker, J.H., Thomas, M.D.A., 2015. Alkali–silica reaction: current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 76, 130–146.
Ramos, V., Fernandes, I., Silva, A.S., Soares, D., Fournier, B., Leal, S., Noronha, F., 2016. Assessment of the potential reactivity of granitic rocks—Petrography and expansion tests. Cem. Concr. Res. 86, 63–77.
RILEM, T.C., 2003. 191-ARP:’Alkali-reactivity and prevention-Assessment, specification and diagnosis of alkali-reactivity’, RILEM Recommended Test Method AAR-1: Detection of potential alkali-reactivity of aggregates-Petrographic method. Mater. Struct. 36, 480–496.
Rivard, P., Fournier, B., Ballivy, G., 2002. The damage rating index method for ASR affected concrete—a critical review of petrographic features of deterioration and evaluation criteria. Cem. Concr. Aggregates 24, 1–11.
Scrivener, K., Snellings, R., Lothenbach, B., 2018. A practical guide to microstructural analysis of cementitious materials. Crc Press.
Shafaatian, S., 2012. Innovative methods to mitigate alkali-silica reaction in concrete materials containing recycled glass aggregates.
Shayan, A., Morris, H., 2001. A comparison of RTA T363 and ASTM C1260 accelerated mortar bar test methods for detecting reactive aggregates. Cem. Concr. Res. 31, 655–663.
Shi, Z., Shi, C., Zhang, J., Wan, S., Zhang, Z., Ou, Z., 2018. Alkali-silica reaction in waterglass-activated slag mortars incorporating fly ash and metakaolin. Cem. Concr. Res. 108, 10–19.
St John, D.A., Poole, A.B., Sims, I., 1998. Concrete petrography: a handbook of investigative techniques.
Standard, A., 2007. Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method).
Stanton, T.E., 1940. Influence of cement and aggregate on concrete expansion. Eng. News-Record.
Thomas, M., Fournier, B., Folliard, K., Ideker, J., Shehata, M., 2006. Test methods for evaluating preventive measures for controlling expansion due to alkali–silica reaction in concrete. Cem. Concr. Res. 36, 1842–1856.
Turkington, A. V, Martin, E., Viles, H.A., Smith, B.J., 2003. Surface change and decay of sandstone samples exposed to a polluted urban atmosphere over a six-year period: Belfast, Northern Ireland. Build. Environ. 38, 1205–1216.
Wigum, B.J., French, W.J., Howarth, R.J., Hills, C., 1997. Accelerated tests for assessing the potential exhibited by concrete aggregates for alkali-aggregate reaction. Cem. Concr. Compos. 19, 451–476.