پیش بینی مدول الاستیک دینامیکی خاک های دانه ای با استفاده از روش بررسی گروهی داده ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه عمران، دانشگاه آزاد اسلامی واحد نجف آباد

2 گروه عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

چکیده

مدول الاستیک یکی از پارامترهای مهم در ژئوتکنیک است که معمولاً از طریق آزمایش‌های آزمایشگاهی یا در محل اندازه‌گیری می‌شود. در این زمینه، آزمایش سه‌محوری یکی از روش‌های شناخته شده در تعیین پارامترهای دینامیکی و استاتیکی خاک است. در این تحقیق با استفاده از آزمایش سه محوری تناوبی و اندازه‌گیری موضعی کرنش، مدول الاستیک دینامیکی خاک‌های مخلوط شن و ماسه در سطح کرنش خیلی کوچک (حدود 5-10) مطالعه شده است. تاثیر پارامترهای دانه‌بندی (ضریب انحنا و ضریب یکنواختی)، مقدار شن، تنش همه جانبه و دانسیته نسبی بر روی مدول الاستیک دینامیکی خاک مورد ارزیابی قرار گرفته است. بر اساس نتایج به‌دست آمده از آزمایش‌های انجام شده در این تحقیق، پایگاه داده‌ای شامل 120 رکورد تشکیل شده است. با استفاده از این پایگاه داده‌، دو مدل برای پیش‌بینی مدول الاستیک دینامیکی با استفاده از الگوریتم بررسی گروهی داده‌ها (GMDH) توسعه داده شده است. تفاوت این دو مدل در استفاده از پارامترهای ورودی متفاوت است، به گونه‌ای که در مدل اول از ضریب انحنا (Cc) و در مدل دوم از ضریب یکنواختی (Cu) به عنوان پارامتر ورودی دانه‌بندی خاک در مدل استفاده شده است. مقایسه مقدار خطا بر اساس شاخص جذر میانگین مربعات خطا (RMSE) نشان‌دهنده برتری نسبی مدل دوم نسبت به مدل اول است. اگرچه مقدار ضریب همبستگی(R) در هر دو مدل مقادیر رضایت بخشی داشته و الگوریتم (GMDH) توانایی مناسبی جهت پیش‌بینی مقادیر مدول الاستیک نشان می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Dynamic Elastic Modulus Estimation of Granular Soils Using Group Method of Data Handling (GMDH)

نویسندگان [English]

  • Meysam Bayat 1
  • Mohsen Saadat 2
1 civil engineering department, islamic azad university, najafabad branch
2 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده [English]

Elastic modulus is one of the most important parameters in geotecal engineering that is usually measured through laboratory or in situ testing. Cyclic triaxial testing is a well-known laboratory test to determine the dynamic and static parameters of soils. In the current study, the dynamic elastic modulus of sand-gravel mixture at very small strain levels (about 10-5) has been studied using a triaxial cyclic apparatus along with local axial strain measurement. Influence of grading characteristics (curvature and uniformity coefficients), gravel content, mean effective confining stress and relative density on dynamic elastic modulus have been investigated. Based on the results of the tests, a comprehensive database including 120 records was established. Based on the database, two models have been developed to predict the dynamic elastic modulus using the group method of data handling (GMDH). In the first model the curvature coefficient (Cc) and in the second model the uniformity coefficient (Cu) is used as input parameter of soil grading charecteristics. Comparison of the RMSE in the two models indicates that the second model has better predictions than the first model. However, the coefficients of correlation (R) of models are satisfactory which indicates the GMDH has a good ability to predict the dynamic elastic modulus.

کلیدواژه‌ها [English]

  • Elastic modulus
  • Granular soil
  • triaxial test
  • Group method of data handling
Asef, M. R., and Farrokhrouz, M., 2017. A semi-empirical relation between static and dynamic elastic modulus. Journal of Petroleum Science and Engineering, Elsevier, 157, 359–363.
Bayat, E., and Bayat, M., 2013. Effect of grading characteristics on the undrained shear strength of sand: Review with new evidences. Arabian Journal of Geosciences, 6(11).
Bayat, M., and Ghalandarzadeh, A., 2018. Stiffness Degradation and Damping Ratio of Sand-Gravel Mixtures Under Saturated State. International Journal of Civil Engineering, Springer International Publishing, 16(10): 1261–1277.
Bayat, M., and Ghalandarzadeh, A., 2019. Influence of Depositional Method on Dynamic Properties of Granular Soil. International Journal of Civil Engineering, Springer International Publishing, 17(6): 907-920.
Biglari, M., and Ashayeri, I., 2011. An empirical model for shear modulus and damping ratio of unsaturated soils. Unsaturated soils: Theory and practice, 1(Cl): 591–595.
Cabalar, A. F., 2010. Applications of the oedometer, triaxial and resonant column tests to the study of micaceous sands. Engineering Geology, Elsevier B.V., 112(1–4): 21–28.
Cai, Y., Dong, Q., Wang, J., Gu, C., and Xu, C., 2015. Measurement of small strain shear modulus of clean and natural sands in saturated condition using bender element test. Soil Dynamics and Earthquake Engineering, Elsevier, 76: 100–110.
Camacho-tauta, J., 2014. Shear modulus reduction curves of Guayuriba sands by cyclic triaxial and bender element tests. (August): 3–9.
Camacho-tauta, J. F., Reyes-ortiz, O. J., and Álvarez, J. D. J., 2013. Comparison between resonant-column and bender element tests on three types of soils. Dyna, 80(182): 163–172.
Cherian, A. C., and Kumar, J., 2017. Effects of Vibration Cycles on Shear Modulus and Damping of Sand Using Resonant Column Tests. Geotechnical and Geoenvironmental Engineering, 143(9): 1–6.
Chien, L. K., and Oh, Y. N., 2001. Dynamic properties of hydraulic reclaimed soil under initial shear stress. Geotechnical Engineering, 32(2): 59–73.
D’Elia, B., and Lanzo, G., 1996. Laboratory and field determinations of small-strain shear modulus of natural soil deposits. Earthquake Engineering 11th World Conference, Acapulco, Mexico.
Escribano, D. E., and Nash, D. F. T., 2015. Changing anisotropy of G0 in Hostun sand during drained monotonic and cyclic loading. Soils and Foundations, Elsevier, 55(5): 974–984.
Goudarzy, M., Rahemi, N., Rahman, M., Asce, M., and Schanz, T., 2017. Predicting the Maximum Shear Modulus of Sands Containing Nonplastic Fines. Journal of Geotechnical and Geoenvironmental Engineering, 143(9): 6017013.
Goudarzy, M., Rahman, M. M., König, D., and Schanz, T., 2016. Influence of non-plastic fines content on maximum shear modulus of granular materials. Soils and Foundations, Elsevier, 56(6): 973–983.
Hagan, M., Demuth, H., and Beale, M., 1997. Neural network design.
Hardin, B. O., and Black, W. L., 1968. Vibration Modulus of Normally Consolidated Clay. Journal of Soil Mechanics & Foundations Div, 94(SM 2): 353–369.
Hubler, J. F., Athanasopoulos-Zekkos, A., and Zekkos, D., 2018. Monotonic and cyclic simple shear response of gravel-sand mixtures. Soil Dynamics and Earthquake Engineering, Elsevier Ltd, 115(October 2017): 291–304.
Ishihara, K., 1996. Soil Behaviour in Earthquake Geotechnics. New York, Clarendon Press.
Ivakhnenko, A. G., 1970. Heuristic self-organization in problems of engineering cybernetics. Automatica, 6(2): 207–219.
Jafarian, Y., Javdanian, H., and Haddad, A., 2018. Dynamic properties of calcareous and siliceous sands under isotropic and anisotropic stress conditions. Soils and Foundations, 58(1): 172–184.
Kallioglou, P., Tika, T., Koninis, G., Papadopoulos, S., and Pitilakis, K., 2009. Shear modulus and damping ratio of organic soils. Geotechnical and Geological Engineering, 27(2): 217–235.
Kawaguchi, T., Mitachi, T., and Shibuya, S., 2001. Evaluation of shear wave travel time in laboratory bender element test. 15Th International Conference on Soil Mechanics and Geotechnical Engineering, 1: 155–158.
Madhusudhan, B. N., and Senetakis, K., 2016. Evaluating use of resonant column in flexural mode for dynamic characterization of Bangalore sand. Soils and Foundations, Elsevier, 56(3): 574–580.
Maher, M. H., Ro, K. S., and Welsh, J. P., 1994. High strain dynamic modulus and damping of chemically grouted sand. Soil Dynamics and Earthquake Engineering, 13(2): 131–138.
Menq, F.-Y., 2003. Dynamic Properties of Sandy and Gravelly Soils. Doctoral dissertation.
Moayerian, S., 2012. Effect of Loading Frequency on Dynamic Properties of Soils Using Resonant Column. University of Waterloo, 112.
Naeini, S. A., Moayed, R. Z., Kordnaeij, A., and Mola-Abasi, H., 2018. Elasticity modulus of clayey deposits estimation using group method of data handling type neural network. Measurement: Journal of the International Measurement Confederation, Elsevier, 121(April 2017): 335–343.
Onwubolu, G., 2015. GMDH and Implementation in C Methodology.World Scientific Publishing Co., Inc.
Payan, M., Khoshghalb, A., Senetakis, K., and Khalili, N., 2016a. Effect of particle shape and validity of Gmaxmodels for sand: A critical review and a new expression. Computers and Geotechnics, Elsevier Ltd, 72: 28–41.
Payan, M., Senetakis, K., Khoshghalb, A., and Khalili, N., 2016b. Influence of particle shape on small-strain damping ratio of dry sands. Géotechnique, 66(7): 610–616.
Russell, S., and Norvig, P., 2016. Artificial intelligence: a modern approach.
Souto, A., Hartikainen, J., and Özüdoˇgru, K., 1994. Measurement of dynamic parameters of road pavement materials by the bender element and resonant column tests. Géotechnique, Thomas Telford Ltd, 44(3): 519–526.
Wichtmann, T., Kimmig, I., and Triantafyllidis, T., 2017. On correlations between ‘dynamic’ (small-strain and ‘static’ (large-strain stiffness moduli – An experimental investigation on 19 sands and gravels. Soil Dynamics and Earthquake Engineering, Elsevier Ltd, 98(March): 72–83.
Wichtmann, T., Navarrete Hernández, M. A., and Triantafyllidis, T., 2015. On the influence of a non-cohesive fines content on small strain stiffness, modulus degradation and damping of quartz sand. Soil Dynamics and Earthquake Engineering, Elsevier, 69: 103–114.
Youd, T. L., and Idriss, I. M., 2001. Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4): 297–313.
Zhang, J., Andrus, R. D., and Juang, C. H., 2005. Normalized Shear Modulus and Material Damping Ratio Relationships. Journal of Geotechnical and Geoenvironmental Engineering, 131(4): 453–464.
Zhou, W., Chen, Y., Ma, G., Yang, L., and Chang, X., 2017. A modified dynamic shear modulus model for rockfill materials under a wide range of shear strain amplitudes. Soil Dynamics and Earthquake Engineering, Elsevier, 92(October 2016): 229–238.
Zhu, S., Yang, G., Wen, Y., and Ou, L., 2014. Dynamic shear modulus reduction and damping under high confining pressures for gravels. Géotechnique Letters, 4(3): 179–186.