ارائه معیاری جهت تعیین کمترین فاصله بین تونل‌های موازی توسط منحنی واکنش پایه (PRC)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زمین شناسی، دانشگاه اصفهان

2 استاد گروه زمین شناسی مهندسی، دانشکده علوم پایه، دانشگاه اصفهان، ایران

چکیده

تعیین فاصله‌ی حفاری بهینه بین تونل‌های موازی از اهمیت فراوانی برخوردار است. مدل‌های تجربی فراوانی جهت تخمین عرض پایه تونل وجود دارد که هر یک محدودیت‌هایی دارند. در این مقاله، معیاری جهت طراحی عرض پایه بین تونل‌های موازی (دوقلو) ارائه شده است. این معیار مبتنی بر منحنی واکنش زمین و با استفاده از مدل‌سازی عددی در شرایط مختلف است. مقدار کرنش در لحظه رسیدن میزان تنش عمودی (1σ) در پایه به مقدار مقاومت فشاری توده سنگ (cmσ) نشانگر نسبت قابل قبول عرض به ارتفاع (w/h) می‌باشد که بیانگر فاصله بهینه بین تونل‌های دوقلو است. بدین منظور تونل دوقلوی پونه که در آزاد راه اراک- خرم‌آباد قرار دارد به عنوان مطالعه موردی انتخاب شده است. این تونل از هشت زون در لایه‌های سنگ آهک مارنی و یک زون در نهشته‌های آبرفتی می‌گذرد. نتایج حاکی از آن است که روش پیشنهادی تطابق خوبی بین ابعاد پایه در مشاهدات تونل مورد مطالعه با در نظر گرفتن ابزار دقیق نصب شده در تونل دارد. برای نمونه در زون 3 مقدار مقاومت فشاری توده سنگ 23/3 مگاپاسکال و مقدار کرنش در محدوده پایه 053/0 است. بر اساس تحلیل‌ها در این زون مقدار 8/1w/h= به دست آمده که عرض پایه پایدار حداقل 1/17 متر محاسبه گردید. درنتیجه با در نظر گرفتن این معیار می‌توان بهینه‌ترین عرض پایه را در طراحی تونل‌های دوقلو در حالت استاتیک با دقت مناسبی در تونل‌های ایران بدست آورد.

کلیدواژه‌ها


عنوان مقاله [English]

A criterion for determination of minimum distance between twin tunnels by pillar reaction curve (PRC)

نویسندگان [English]

  • Hossein Ghorbani 1
  • Rassoul Ajalloeianb 2
1 Department of Geology, University of Isfahan
2 Department of Geology, University of Isfahan, Isfahan, Iran
چکیده [English]

Determination of optimum distance between twin tunnels is very important. There are many empirical models to estimate width of the pillar, all of which have their own limitations. In this study an attempt was made to present a new criterion for design of the pillar between twin (parallel) tunnels. It is based on ground reaction curve and numerical modelling. Strain magnitude observed when normal stress (σ1) in the pillar reaches the value of compressive strength of the rock mass (σcm), denotes the allowable ratio of width to height (w/h) which shows the optimum distance between twin tunnels. Pooneh twin tunnels located in Arak-Khoramabad Expressway, was selected as a case study. This Tunnel is made of eight zones in layers of marly limestone and one zone in alluvial deposits. Results of the suggested method show a good agreement between the pillar dimensions seen in the case study obtained from instrumentation and the method (new criterion). In zone 3, as an example, the amounts of rock mass compressive strength and strain in the pillar are 3.23 MPa and 0.053, respectively. In this zone, 1.8 was obtained for the w/h ratio, according to the analysis the minimum width for the stable pillar must be 17.1 m. Taking all aspects of geomechanical and geometrical characteristics of the tunnels into consideration, this method is capable of determining the optimum width of the pillar when designing the twin tunnels in static conditions with a high level of precision in all Iranian tunnels.

کلیدواژه‌ها [English]

  • Twin tunnels
  • Pillar reaction curve
  • Pooneh tunnel
Arshadnejad, Sh., poshtvan, H., Parsaee, H., 2006. Determination of Optimum pillar size by empirical and numerical methods based on ground reaction curve – Case study, Soltan abad’s underground salt mine. Proc. of 7th tunneling conference in Tehran, Iran, (in Persian), pp. 849-865.
Aydan, S. Dalgic., 1998. Prediction of deformation behavior of 3-lanes Bolu tunnels through squeezing rocks of North Anatolian fault zone (NAFZ) Proceedings of Regional Symposium on Sedimentary Rock Engineering, Taipei, China, pp. 228-233.
Barton, N., Loset, F., Lien, R., and Lunde, j., 1980. Application of the Q-System in design decicions. Subsurface Space, Ed: M. Bergman, 2, 553-561.
Bunting, D., 1911. Chamber pillars in deep anthracite mines, Transactions, AIME, Vol. 42: 235-245.
Frith, R., Reed, G., 2018. Coal pillar design when considered a reinforcement problem rather than a suspension problem, International Journal of Mining Science and Technology, Vol. 28: 11-19.
Gaofeng, S., Shengli, Y., 2018. Probability and reliability analysis of pillar stability in South Africa, International Journal of Mining Science and Technology, article in press (doi.org/10.1016/J.JJmst.2018.02.004).
Ghazvinian, A.H., 1989. Prediction of the stability of underground openings by equivalent material modelling, PhD Thesis, Submitted to Indian Institute of Technology Delhi, 188p.
Ghazvinian, A.H., Gupta, K.K., Ramamurthy, T., 2000. Equivalent material modelling to predict the stability of underground openings, Proc. of Tunnelling Asia 2000, Central Board of Irrigation and Power, New Delhi, pp. 1:58-69.
Goshtasbi, K., Arshadnejad, Sh., 2008. Pillar design in underground mines by ground reaction curve, Journal of Geology & Environment, Islamic Azad University, Islamshahr branch, (in Persian), Vol. 1: 11-23.
Hage Chehade, F., Shahrour, I., 2008. Numerical analysis of the interaction between twin-tunnels: Influence of the relative position and construction procedure, Journal of Tunnelling and Underground Space Technology, Vol. 23: 210-214.
Hassani, H., Arshadnejad, Sh., Khodadadi, H., Goodarzi, N., 2008. 3D numerical modelling of a couple of power intake shafts and head race tunnels at vicinity of a rock slope in Siah Bishe pumped storage dam, north of Iran, Journal of Applied Sciences, Science Alert publisher, pp. 4294-4302.
Hoek, E., Brown, E.T., 1982. Underground excavations in rock, the institution of Mining and Metallurgy, Hertford, England, 527p.
Hoek, E., Brown, E.T., 1980a. Underground Excavation in Rock. Institution of Mining and Metallurgy, London, UK.
Hoek, E., Marinos, P., 2007. A brief history of the development of the Hoek-Brown failure criterion. Soils and Rocks, No., 2.
Holland, C.T., 1964. Strength of coal in mine pillars, Proc. of 6th US symposium on rock mechanics, University of Missouri, Rolla, pp. 450-466.
Kalamaras, G., Bieniawski, Z.T., 1995. A rock mass strength concept incorporating the effect of time. Proc ISRM Congress, Tokyo, Balkema, p.295.
Krauland, N., Soder, P.E., 1987. Determining pillar strength from pillar failure observations, Engineering Mining Journal, Vol. 8: 34-40.
Lunder, P.J., Pakalnis, R., 1997. Determination of the strength of hard rock mine pillars, Bulletin of Canadian Inst. Min. Metall., Vol. 90: 51-55.
Martin, C.D., Maybee, W.G., 2000. The strength of hard-rock pillars, Int. Journal of Rock Mechanics & Mining Sciences, Vol. 37: 1239-1246.
Morrison, R.G.K., Corlett, A.V., Rice, H.R., 1956. Report of special committee on mining practices at Elliott lake, Ontario department of Mines, Bulletin, 155 p.
Osman. A., 2010. Stability of unlined twin tunnels in undrained clay, Journal of Tunnelling and Underground Space Technology, Vol. 25: 290-296.
Potvin, Y., Hudyma, M.R., Miller, H.D.S., 1989. Design guidelines for open stope support, Bulletin of Canadian Inst. Min. Metall., Vol. 82: 53-62.
Sahoo, J.P., Kumar, J., 2013. Stability of long unsupported twin circular tunnels in soils, Journal of Tunnelling and Underground Space Technology, Vol. 38: 326-335.
Salamon, M.D.G., Munro, A.H., 1967. A study of the strength of coal pillars, Journal of South African Institute of Mining and Metallurgy, Vol. 68: 55-67.
Sojöberg, J., 1992. Failure modes and pillar behaviour in the Zinkgruvan mine, Proc. of 33rd U.S. Rock Mechanics symposium, Sante Fe. Rotterdam, A. A. BALKEMA, pp. 491-500.
Vander Merwe, J.N., Mathey, M., 2013. Update of coal pillar database for South Africa coal mining, Journal of South African Institute of Mining and Metallurgy, (SAIIM), Vol. 113: 825-840.
Von Kimmelmann, M.R., Hyde, B., Madgwick, R.J., 1984. The use of computer applications at BCL Limited in planning pillar extraction and design of mining layouts, Proc. of ISRM symposium: Design and Performance of Underground Excavations, London, British Geotechnical Society, pp. 53-63.
Wang, H.N., Zeng, G.S., Utili, S., Jiang, M.J., Wu, L., 2017. Analytical solutions of stresses and displacements for deeply buried twin tunnels in viscoelastic rock. International Journal of Rock Mechanics and Mining Sciences, 93: 13-29.