تأثیر زئولیت بر مقاومت تراکمی، نفوذپذیری و مقاومت در برابر حملات یون کلر در بتن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه پژوهشی ساختمانی و معدنی، پژوهشگاه استاندارد، سازمان ملی استاندارد. کرج. ایران

2 مدیر بخش دوام بتن، شرکت نانو بتن امین

3 دانشجوی دکتری زمین شناسی مهندسی دانشگاه فردوسی، مشهد، ایران

چکیده

خوردگی از عوامل مخربی است که آسیب زیادی را به آرماتور داخل بتن می‌رساند و خسارات جبران‌ناپذیری را برای اقتصاد کشور ایجاد می‌کند. نفوذ یون کلر در بتن یکی از مهم‌ترین عوامل مؤثر برخوردگی بتن می باشد. ازاین‌رو لازم است که با شناسایی درست خصوصیات بتن با استفاده از روش‌های مناسب به مقابل با خوردگی پرداخته شود. در این تحقیق به ارزیابی تأثیر اضافه کردن زئولیت (0، 10 و 15 درصد) به بتن بر روی مقاومت تراکمی و میزان نفوذ یون کلر در بتن پرداخته‌شده است. با توجه به آزمایش‌ها انجام‌شده، با اضافه کردن زئولیت، در آغاز مقاومت تراکمی بتن کاهش می‌یابد ولی پس از گذشت 90 روز، مقاومت تراکمی افزایش می‌یابد و با مقاومت نمونه‌های شاهد تقریباً برابر می‌شود. همچنین زئولیت میزان نفوذ یون کلر در بتن را به‌طور متوسط 30% (در مقایسه با نمونه شاهد) کاهش می‌دهد. در نهایت با توجه به نتایج به‌دست‌آمده می‌توان بیان کرد که با استفاده از 10% زئولیت، خواص بتن بهبود می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of zeolite on compressive strength, permeability and resistance to chlorine ion attack in concrete

نویسندگان [English]

  • Behzad Saeedi Razavi 1
  • Seyed Mohamad Rohani 2
  • Mojtaba Shiri 3
  • Behzad Mehdikhani 1
1 Department of Construction and Mineral Engineering, Technology and Engineering Research Center, Standard Research Institute (SRI), Karaj, Iran
2 Director of durability department of concrete, Amin Nano Concrete KnowledgeCo.
3 PhD student of engineering geology Ferdowsi University, Mashhad, Iran
چکیده [English]

Corrosion is one of the destructive factors that causes a lot of damage to the reinforcement inside the concrete and causes irreparable damage to the economy. Chlorine ion penetration in concrete is one of the most important factors affecting concrete corrosion. Therefore, it is necessary to refine corrosion by identifying the concrete properties using proper methods. In this study, the effect of adding zeolite (0, 10 and 15%) to concrete on the uniaxial compressive strength and penetration rate of chlorine ion in concrete was investigated. According to the tests result performed by adding zeolite at the beginning concrete compressive strength decreases but after 90 days the compressive strength increases and is approximately equal to the strength of control samples. Zeolite also reduces the penetration rate of chlorine ions into concrete by 30% on average (compared to the control sample). Finally, it can be concluded that using 10% zeolite improves the concrete properties.

کلیدواژه‌ها [English]

  • Concrete
  • Zeolite
  • Compressive strength
  • Chlorine ion
  • Corrosion
احمدی، ج.، عزیزی، ح.، کوهی، م.، 1394. بررسی تأثیر زئولیت در عیارهای مختلف سیمان بر روی مقاومت و نفوذپذیری بتن. تحقیقات بتن، 8 (2): 5-18.
خانزادی، م.، نبی زاده شهر بابک، م.ر.، باقری، س.ر.، قلعه نوی، و.، 1396. اثر جایگزینی زئولیت بر کارایی بتن. مصالح و سازه‌های بتنی، 2 (2): 89- 98.
رستمی، ر.ا.، 1395. بررسی تأثیر متاهالوزیت، متاکائولن، زئولیت و میکروسیلیس بر خواص مکانیکی و دوام بتن: پایان‌نامه کارشناسی ارشد، دانشگاه تربیت دبیری شهید رجائی.
شکرچی زاده، م.، ولی پور، م.، پرگر، ف.، 1389. بررسی تأثیر استفاده از پوزولان های میکروسیلیس، متاکائولن و زئولیت و الیاف پلی‌پروپیلن بر مقاومت در برابر نفوذ یون کلر در بتن در شرایط محیطی جزیره قشم. نشریه مهندسی عمران، 22: 83-96.
کلهری، م.، سایبانی. م.، 1391. دوام بتن­های حاوی زئولیت در برابر نفوذ یون­های کلراید و خوردگی. دومین کنفرانس ملی مهندسی و مدیریت ساخت، دانشگاه صنعتی امیرکبیر، پردیس بندرعباس، ایران.
AASHTO TP95., 2011, Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration. AASHTO Provisional Standards, American Association of State Highway and Transportation Officials, Washington, D.C.
Ahmadi, B., Shekarchi, M., 2010. Use of natural zeolite as a supplementary cementitious material. Cement & Concrete Composites, 32: 134–141.
Alsadat sabet, F., Libre, N.A., Shekarchi, M., 2013. Mechanical and durability properties of self-consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Construction and Building Materials, 44: 175–184.
ASTM C 33., 2003. Standard specification for concrete aggregates. Book of ASTM Standards, American Society for Testing and Materials.
ASTM C 642., 1997. Standard test method for density, absorption, and voids in hardened concrete. Book of ASTM Standards, American Society for Testing and Materials.
BS 1881., 1993. Methods for determination of compressive strength of concrete cubes. British Standard Institution.
Chan, Y.N., Ji, X., 1999. Comparative study of the initial surface absorption and chloride difusion of high performance zeolite, silica fume and PFA concretes. Cement & Concrete Composites, 21: 293-300.
Dahir, R.K., McCarthy, M.J., Tittle, P.A.J., 2006. Role of cement content in specification for concrete durability: Aggregate type Influences. Structures & Buildings, 159: 229–242.
Feng, N., Feng, X., Hao, T., Xing, F., 2002. Effect of ultrafine mineral powder on the charge passed of the concrete. Cement and Concrete Research, 32(4): 623-627.
Ghasemi, M., Rasekh, H., Berenjian, J., AzariJafari, H, 2019. Dealing with workability loss challenge in SCC mixtures incorporating natural pozzolans: A study of natural zeolite and pumic. Construction and Building Materials, 222: 424–436.
Ikotun, B.D., Ekolu, S., 2010. Strength and durability effect of modified zeolite additive on concrete properties. Construction and Building Materials, 24: 749–757.
Karakurt, C., Topcu, I.B., 2011. Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Construction and Building Materials, 25: 1789-1795.
  Kolias, S., & Georgiou, C. 2005. The effect of paste volume and of water content on the strength and water absorption of concrete. Cement and Concrete Composites, 27(2): 211-216.
Markiv, T., Sobol, K., Franus, M., Franus, W., 2016. Mechanical and durability properties of concretes incorporating natural zeolite. Archives of Civil and Mechanical Engineering, 16(4): 554-562.
Mehta, P.K., 1987. Natural pozzolans: Supplementary cementing materials in concrete. CANMET Special Publication, 86: 1-33.
Mohseni, E., Tang, W., Cui, H., 2017. Chloride Diffusion and Acid Resistance of Concrete Containing Zeolite and Tuff as Partial Replacements of Cement and Sand. Materials, 10: 372.
Nagrockiene, D., Girskas, G., 2016. Research into the properties of concrete modified with natural zeolite addition. Construction and Building Materials, 113: 964–969.
Najimi, M., Sobhani, J., Ahmadi, B., Shekarchi, M., 2012. An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Construction and Building Materials, 35: 1023-1033.
NT Build 492., 1999. Concrete, mortar and cement-based repair materials. Chloride migration coefficient from non-steady-state migration experiments. Nordtest, Espoo, Finland.
Perraki, T.H., Kakali, G., Kontoleon. F., 2003. The effect of natural zeolites on the early hydration of Portland cement. Microporous and Mesoporous Materials, 61: 205-212.
Poon, C.S., Kou, S.C., Lam, L., 2006. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construction and Building Materials, 20: 858–865.
Poon, C.S., Lam, L., Kou, S.C., Lin, Z.S., 1999. A study on the hydration rate of natural zeolite blended cement pastes. Construction and Building Materials, 13: 427-432.
Poon, C.S., Lam, S.C., 2008. The effect of aggregate-to-cement ratio and types of aggregate on the properties of pre-cast concrete blocks. Cement & Concrete Composites, 30: 283–289.
Ramezanianpour, A.A., Mousavi, R., Kalhori, M., Sobhani. J., Najimi, M., 2015. Micro and macro level properties of natural zeolite contained concretes. Construction and Building Materials, 101: 347-358.
Samimi, K., Kamali-Bernard, S., Maghsoudi, A.A., Maghsoudi, M., Siad., H., 2017. Influence of pumice and zeolite on compressive strength, transport properties and resistance to chloride penetration of high strength self-compacting concretes. Construction and Building Materials, 151: 292–311.
Shi, C. 2004. Effect of mixing proportions of concrete on its electrical conductivity and the rapid chloride permeability test (ASTM C1202 or ASSHTO T277) results. Cement and concrete research, 34(3): 537-545.
Shi, C., 2004. Effect of mixing proportions of concrete on its electrical conductivity and rapid chloride permeability test (ASTM C 1202 or ASSHTO T277) results. Cement and Concrete Research, 34: 537–545.
Tran, Y.T., lee, J., Kumar, P., Hyun, Kim, H., Lee, S.S., 2019. Natural zeolite and its application in concrete composite production. Composites Part B: Engineering, 165: 354-364.
Tuan, N.V., Thang, N.C., Hanh, P.H., Yen, T.T., 2016. Effect of zeolite on autogenous shrinkage of ultra-high performance concrete, Proceeding of the 7th International Conference of Asian Concrete Federation: "Sustainable concrete for now and the future", Hanoi, Vietnam.
Valipour, M., Pargar, F., Shekarchi, M., Khani, S., 2013., Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41: 879–888.
Vejmelková, E., Koňáková, D., Kulovaná, T., Keppert, M., Žumár, J. Rovnaníková, P., Keršner, Z., Sedlmajer, M., Černý, R., 2015. Engineering properties of concrete containing natural zeolite as supplementary cementitious material: Strength, toughness, durability, and hygrothermal performance. Cement and Concrete Composites, 55: 259-267.
Zhang, J., Ding, X., Wang, Q., Zheng, X., 2018. Effective solution for low shrinkage and low permeability of normal strength concrete using calcined zeolite particles. Construction and Building Materials, 160: 57-65.
Zhang, J., Wang, Q., Zhang, J., 2017. Shrinkage of internal cured high strength engineered cementitious composite with pre-wetted sand-like zeolite. Construction and Building Materials, 134: 664-672.