ارزیابی دوام طولانی مدت سنگ‌های ساختمانی کربناته بعد از چرخه‌های ذوب و انجماد با استفاده از روش CART

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

چرخه‌های ذوب و انجماد یکی از مهمترین عوامل هوازدگی فیزیکی سنگ‌ها است که می‌تواند به شدت دوام طولانی مدت و عمر سرویس‌دهی سنگ‌های ساختمانی را تحت تأثیر قرار دهد. به منظور ارزیابی دوام طولانی مدت سنگ‌ها در برابر چرخه‌های ذوب و انجماد می‌توان از دو پارامتر ثابت تخریب (λ) و شاخص نیمه عمر (N1/2) استفاده کرد. تعیین این دو پارامتر نیازمند انجام آزمایش ذوب و انجماد است که فرآیندی سخت، زمان‌بر و پر‌هزینه است. لذا توسعه مدل‌هایی غیر مستقیم به گونه‌ای که بتوان این دو پارامتر را بدون انجام آزمایش ذوب و انجماد تخمین زد، می‌تواند در ارزیابی دوام طولانی مدت سنگ‌ها به طور سریع و با هزینه کمتر مفید واقع شود. در این مقاله با بررسی سرعت موج فشاری (Vp) سنگ‌ها طی فرآیند ذوب و انجماد برای 22 نوع از سنگ‌های ساختمانی کربناته ایران، دو پارامتر λ و N1/2 تعیین شدند. سپس بر اساس داده‌های به دست آمده و با استفاده از دو تکنیک تحلیل رگرسیون و درخت طبقه‌بندی و رگرسیون (CART) مدل‌هایی برای پیش‌بینی این دو پارامتر توسعه داده شد. نتایج نشان داد که مدل‌های توسعه یافته بر اساس تکنیک CART، دقت و صحت بالاتری نسبت به مدل‌های رگرسیونی دارند. این مدل‌ها قادر هستند بر اساس تخلخل اولیه سنگ پیش‌بینی قابل قبولی از λ و N1/2 ارائه دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of long-term durability of carbonate building stones after freeze and thaw cycles using CART method

نویسندگان [English]

  • Vahid Amirkiyaei
  • Ebrahim Ghasemi
  • Lohrasb Faramarzi
Department of Mining Engineering, Isfahan University of Technology, Isfahan, Iran
چکیده [English]

The freeze and thaw cycles are one of the most important factors in physical weathering of stones, which substantially can influence the long-term durability and service life of building stones. To evaluate the long-term durability of stones against freeze and thaw cycles, two parameters of decay constant (λ) and half-life index (N1/2) can be applied. To determine these two parameters, the freeze and thaw test should be done, which is a difficult, time-consuming and expensive process. Therefore, development of indirect models to estimate these two parameters without performing freeze and thaw test can be useful for fast and low-cost evaluation of stones’ long-term durability. In this paper, considering the P-wave velocity (VP) of stones during the freeze and thaw process for 22 types of Iran’s carbonate building stones, two parameters of λ and N1/2 were determined. Then, based on obtained data and using regression analysis and classification and regression tree (CART) techniques, models were developed to predict these two parameters. The results indicated that the developed models using CART technique have higher accuracy and precision than the regression models. These models are able to present acceptable prediction of λ and N1/2 based on the initial porosity of stone.

کلیدواژه‌ها [English]

  • freeze and thaw cycles
  • Long-term durability
  • classification and regression tree (CART)
  • Half-life index
  • Decay constant
جمشیدی، ا.، نیکودل، م.ر.، خامه‌چیان، م.، 1395. تابع مدل­های ریاضی برای ارزیابی دوام طولانی مدت و مقایسه تأثیر چرخه­های یخبندان و تبلور نمک روی خصوصیات مکانیکی تراورتن طوسی آذرشهر؛ آذربایجان شرقی، مجله زمین­شناسی کاربردی پیشرفته، شماره 19، بهار 95،  1-9.
قبادی، م. ح.، بابازاده، ر.، اسنفدیاری، ر.، 1393. پیش­بینی دوام طولانی مدت ماسه سنگ­های سازند قرمز بالایی در مقابل پدیده ذوب-انجماد و هوازدگی نمک با استفاده از مدل تابع تخریب، مجله انجمن زمین شناسی مهندسی ایران، جلد هفتم، شماره3 و 4، پاییز و زمستان، 57-70.
قبادی، م. ح.، طالب‌بیدختی، ع.، نیکودل، م.ر.، 1394، اثر فرآیند ذوب و انجماد بر روی شاخص دوام وارفتگی و مقاومت کششی برزیلی توف­های سازند کرج، مجله انجمن زمین شناسی مهندسی ایران، جلد هشتم، شماره1 و 2، بهار و تابستان، 35-50.
Abdelhamid, MMA., Li, D., Ren, G., Zhang, C., 2020. Estimating deterioration rate of some carbonate rocks used as building materials under repeated frost damage process, China, Adv Mater Sci Eng, 2020:3826128.
Akin, M., Özsan, A., 2011. Evaluation of the long-term durability of yellow travertine using accelerated weathering tests, Bull Eng Geol Environ, 70:101–114.
ASTM C170., 2017. Standard test method for compressive strength of dimension stone, ASTM International.
Bayram, F., 2012. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions, Cold Reg Sci Technol, 83–84:98–102.
Chen, TC., Yeung, MR., Mori, N., 2004. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action, Cold Reg. Sci. Technol, 38:127–136.
Eslami, J., Walbert, C., Beaucour, A.L., Bourges, A., Noumowe, A., 2018. Influence of physical and mechanical properties on the durability of limestone subjected to freeze-thaw cycles, Constr Build Mater, 162:420–429.
Fan, L., Xu, C., Wu, Z., 2020. Effects of cyclic freezing and thawing on the mechanical behavior of dried and saturated sandstone, Bull Eng Geol Environ, 79:755–765. 
Ghasemi, E., Bakhshandeh, H., Bagherpour, R., 2016. Assessment of backbreak due to blasting operation in open pit mines : a case study, Environ Earth Sci, 75:552.
Hasanipanah, M., Faradonbeh, R.S., Amnieh, H.B., Armaghani, D., Monjezi, M., 2017. Forecasting blast-induced ground vibration developing a CART model, Eng Comput, 33:307–316.
ISRM, 1978. Suggested Method for Determining Sound Velocity, Int J Rock Mech Min Sci Geomech Abstr, 15:53–58.
ISRM, 1979. Suggested methods for determining water content, porosity, density, absorption and related properties, Int J Rock Mech Min Sci Geomech Abstr, 16:143–151.
Jamshidi, A., Nikudel, M.R., Khamehchiyan, M., 2013, Predicting the long-term durability of building stones against freeze – thaw using a decay function model, Cold Reg Sci Technol, 92:29–36.
Jamshidi, A., Reza, M., Khamehchiyan, M., 2016. Evaluation of the durability of Gerdoee travertine after freeze – thaw cycles in fresh water and sodium sulfate solution by decay function models, Eng Geol, 202:36–43.
Kalmegh, S., 2015. Analysis of WEKA Data Mining Algorithm REPTree , Simple Cart and RandomTree for Classification of Indian News, Int J Innov Sci Eng Technol, 2:438–446.
Khanlari, G., Abdilor, Y., 2015. Influence of wet – dry , freeze – thaw , and heat – cool cycles on the physical and mechanical properties of Upper Red sandstones in central Iran, Bull Eng Geol Environ, 1287–1300.
Liping, W., Ning, L., Jilin, Q., Yanzhe, T., Shuanhai, X., 2019. A study on the physical index change and triaxial compression test of intact hard rock subjected to freeze-thaw cycles, Cold Reg Sci Technol, 160:39–47.
Martínez-Martínez, J., Benavente, D., Gomez-Heras, M., Marco-castaño, L., García-del-cura, M., 2013, Non-linear decay of building stones during freeze-thaw weathering processes, Constr Build Mater, 38:443–454.
Mutlutürk, M., Altindag, R., Türk, G., 2004 A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing-thawing and heating-cooling, Int J Rock Mech Min Sci, 41:237–244.
Özbek, A., 2014. Investigation of the effects of wetting-drying and freezing-thawing cycles on some physical and mechanical properties of selected ignimbrites, Bull Eng Geol Environ, 73:595–609.
Park, J., Hyun, C.U., Park, H.D., 2015. Changes in microstructure and physical properties of rocks caused by artificial freeze–thaw action, Bull Eng Geol Environ, 74:555–565.
Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P., 2014. The CART Decision Tree for Mining Data Streams, Inf Sci (Ny), 266:1–15.
Salimi, A., Faradonbeh, R.S., Monjezi, M., Moormann, C., 2018. TBM performance estimation using a classification and regression tree (CART) technique, Bull Eng Geol Environ, 77:429–440.
Takarli, M., Prince, W., Siddique, R., 2008. Damage in granite under heating / cooling cycles and water freeze – thaw condition, Int J Rock Mech Min Sci, 45:1164–1175.
Tan, X., Chen Weizhong, W., Yang, J., Cao, J, 2011. Laboratory investigations on the mechanical properties degradation of granite under freeze-thaw cycles, Cold Reg Sci, Technol 68:130–138.
TSE 699 Methods of Testing for natural building stones, 1987. Institute of Turkish Standards, Turk Standartları Enstitusu (TSE). 82.
Tuǧrul, A., 2004. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey, Eng Geol, 75:215–227.
Uğur, İ., Toklu, H.Ö., 2019. Effect of multi-cycle freeze-thaw tests on the physico-mechanical and thermal properties of some highly porous natural stones, Bull Eng Geol Environ, 1–13.
Yavuz, H., 2011 Effect of freeze – thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone, Bull Eng Geol Environ, 70:187–192.
Yavuz, H., Altindag. R., Sarac, S., Ugur, I., Sengun, N., 2006. Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering, Int J Rock Mech Min Sci, 43:767–775.
Yurdakul, M., Akdas, H., 2013. Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters, Constr Build Mater, 47:1010–1019.