مطالعه آزمایشگاهی تغییر شکل‌ تابع زمان دیواره میخ کوبی شده در حین عملیات گودبرداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد

2 دانشجوی کارشناسی ارشد ژئوتکنیک، گروه عمران، دانشکده مهندسی، دانشگاه فردوسی، مشهد، ایران

3 دانشجوی دکترای ژئوتکنیک، گروه عمران، دانشکده مهندسی، دانشگاه فردوسی، مشهد، ایران

چکیده

امروزه با گسترش شهرها و افزایش جمعیت، لزوم ایجاد ساختمان‌های بلند و گودبرداری‌های عمیق برای اجرای آن‌ها بیش از پیش احساس می‌شود. خاک تحت بارگذاری ثابت باگذشت زمان تغییرشکل‌هایی را تجربه می‌کند که تغییر شکل‌های تابع زمان نامیده می‌شود که در دراز مدت به لحاظ ایمنی از اهمیت ویژ‌ه‌ای برخوردار است. در این پژوهش، رفتار گودهای پایدار سازی شده به روش میخ‌کوبی در خاک ماسه‌ای و با در نظر گرفتن اثر زمان با استفاده از تکنیک مدل‌سازی فیزیکی مورد مطالعه قرار گرفته است. نتایج آزمایش‌ها نشان می‌دهد که افزایش عمق گودبرداری سبب افزایش تغییرمکان‌های جانبی، نشست‌های سطحی زمین پشت دیواره گود و نیز تغییر شکل‌های تابع زمان می‌گردد. هم‌چنین توقف عملیات گودبرداری و یا رها سازی آن موجب ایجاد افزایش قابل توجه تغییر شکل‌های تابع زمان می‌گردد. اندازه‌گیری‌ها نشان می‌دهد تغییرشکل‌هایی که در طول زمان رخ می‌دهد با یک نرخ کاهشی ادامه یافته که علت آن افزایش آن بسیج شدن تدریجی نیروها در میخ‌ها می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study of time-dependent deformation of the wall deformation Nailing during excavation operations

نویسندگان [English]

  • Jafar Bolouri Bazaz 1
  • Sima Koohestani Asbagh Soo 2
  • Mahmood Abdollahi 3
1 Associate Professor of Civil Engineering, Engineering Department, Ferdowsi University of Mashhad, Iran
2 MSc in Civil-Geotechnical Engineering, Ferdowsi University of Mashhad, Iran
3 Ph.D. Student in Civil-Geotechnical Engineering, Ferdowsi University of Mashhad, Iran
چکیده [English]

Today, with the cities expansion and population growth, the need for high-rise buildings and deep excavations for their implementation is increasingly felt. Under constant loading conditions, soil undergoes deformations over time which is called time-dependent deformations. This is of particular importance in terms of safety in the long run. In this study, based on the physical modelling technique, the long term behaviour of stabilized deep excavation in silty sand, using the nailing method, has been investigated. The test results indicated that with increasing the depth of excavation the lateral displacements, the surface settlements behind the excavation wall and also the time-dependent deflections increase as well. In addition, if the excavation operation is brought to a temporary halt or is led to the abandonment, it results in a significant increase in the time-dependent deflections. Finally, the recorded data revealed that the rate of the experienced deformations over time decreases which is due to the gradual mobilization of forces in the nails.

کلیدواژه‌ها [English]

  • experimental study
  • Ground settlement
  • Nailing
  • Time-dependent deflections
  • Wall deflection
یادگاری, ش. 1393. بررسی رفتار خزشی خاک ماسه‌ای مسلح شده با الیاف ژئوسنتتیک در شرایط آزمایشگاهی. دانشگاه محقق اردبیلی.
Abdollahi, M. 2017. Experimental Study of the Excavation Using Pile-Anchorage System. Degree of Master of Science in Civil Engineering, Ferdowsi University of Mashhad-Iran.
Abdollahi, M. & Bolouri Bazaz, J. 2017. Reconstitution OF Sand Specimens Using a Rainer System. International Journal of Engineering.
Augustesen, A., Liingaard, M. & Lade, P. V. 2004. Evaluation of Time-Dependent Behavior of Soils. International Journal of Geomechanics, 4, 137-156.
Chen, S.-L., Ho, C.-T. & Gui, M.-W. 2014. Diaphragm wall displacement due to creep of soft clay. Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 167, 297-310.
Ching, P. 2019. Creep in Sands : A Study of Time Dependent Deformation of Reclamation Sand FIll Under Constant Effective Stress. HKU Theses Online (HKUTO).
Finno, R. J., Atmatzidis, D. K. & Perkins, S. B. 1989. Observed Performance of a Deep Excavation in Clay. Journal of Geotechnical Engineering, 115, 1045-1064.
Hsieh, P.-G. & Ou, C. Y. 1998. Shape of Ground Surface Settlement Profiles Caused by Excavation. Canadian Geotechnical Journal, 35, 1004-1017.
Hsiung, B.-C. B. 2009. A Case Study on the Behaviour of a Deep Excavation in Sand. Computers and Geotechnics, 36, 665-675.
Hsiung, B. C. B., YANG, K.-H., AILA, W. & HUNG, C. 2016. Three-dimensional Effects of a Deep Excavation on Wall Deflections in Loose to Medium Dense Sands. Computers and Geotechnics, 80, 138-151.
Hwang, R. N., MOH, Z.-C. & WANG, C. H. 2007a. Performance of Wall Systems during Excavation for Core Pacific City. Journal of GeoEngineering, 2, 53-60.
Hwang, R. N., Moh, Z. C. & Wang, C. H. 2007b. Toe Movements of Diaphragm Walls and Correction of Inclinometer Readings. Journal of GeoEngineering, 2, 61-71.
I. Mana, A. & Clough, G. W. 1981. Prediction of Movement for Braced Cut in Clay. Journal of Geotechnical and Geoenvironmental Engineering, 107, 759-777.
Kuhn, M. R. & Mitchell, J. K. 1993. New Perspectives on Soil Creep. Journal of Geotechnical Engineering, 119, 507-524.
Kung, G. T., Juang, C. H., Hsiao, E. C. & HASHASH, Y. M. 2007. Simplified Model for Wall Deflection and Ground-Surface Settlement Caused by Braced Excavation in Clays. Journal of Geotechnical and Geoenvironmental Engineering, 133, 731-747.
Laefer, D. F., Ceribasi, S., Long, J. H. & Cording, E. J. 2009. Predicting RC Frame Response to Excavation-Induced Settlement. Journal of Geotechnical and Geoenvironmental Engineering, 135, 1605-1619.
Leong, E., CHeong, H. & Pan, T. 1996. A Device for the Measurement of Sub-Surface Ground Vibrations. Geotechnical Testing Journal, 19, 286-296.
Lin, H. D., OU, C. Y. & Wang, C. C. 2002. Time‐Dependent Displacement of Diaphragm Wall Induced by Soil Creep. Journal of the Chinese Institute of Engineers, 25, 223-231.
Long, M. 2001. Database for Retaining Wall and Ground Movements due to Deep Excavations. Journal of Geotechnical and Geoenvironmental Engineering, 127, 203-224.
Mana, A. I. & Clough, G. W. 1981. Prediction of Movement for Braced Cut in Clay. Journal of the Geotechnical Engineering Division 107, 759-7.
Moormann, C. 2004. Analysis of Wall and Ground Movements Due to Deep Excavations in Soft Soil Based on a New Wordwide Database. Soil and Foundations, 44, 87-98.
Nikolinakoum, M. A., Whittle,  A. J., Savidis, , S. & Schran, U. 2011. Prediction and Interpretation of the Performance of a Deep Excavation in Berlin Sand. Journal of Geotechnical and Geoenvironmental Engineering, 137, 1047-1061.
Ou, C.-Y. 2006a. Deep Excavation: Theory and Practice, Netherlands, Taylor & Francis.
Ou, C.-Y. 2006b. Deep Excavation: Theory and Practice. Netherlands: Taylor & Francis.
Ou, C.-Y., CHiou, D.-C. & Wu, T. S. 1996. Three-Dimensional Finite Element Analysis of Deep Excavations. Journal of Geotechnical Engineering, 122, 337-345.
Ou, C.-Y., Hsieh, P.-G. & CHiou, D. C. 1993. Characteristics Of Ground Surface Settlement During Excavation. Canadian Geotechnical Journal, 30, 758-767.
Ou, C.-Y., Liao, J.-T. & CHeng, W.-L. 2000a. Building Response and Ground Movements Induced by a Deep Excavation. Géotechnique, 50, 209-220.
Ou, C.-Y., Liao, J.-T. & Lin, H. D. 1998. Performance of Diaphragm Wall Constructed Using Top-Down Method. Journal of Geotechnical and Geoenvironmental Engineering, 124, 798-808.
Ou, C.-Y., SHiau, B.-Y. & Wang, I. W. 2000b. Three-dimensional Deformation Behavior of the Taipei National Enterprise Center (TNEC) Excavation Case History. Canadian Geotechnical Journal, 37, 438-448.
Peck, R. B. 1969. Deep Excavation and Tunneling in Soft Ground. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico, 225-325.
Wang, J. H., Xu, Z. H. & Wang, W. D. 2010. Wall and Ground Movements due to Deep Excavations in Shanghai Soft Soils. Journal of Geotechnical and Geoenvironmental Engineering, 136, 985-994.
Wong, I. H., Low, B. K., Pang, P. Y. & Raju, G. V. R. 1997. Field Performance of Nailed Soil Wall in Residual Soil. Journal of Performance of Constructed Facilities, 11, 105-112.