بررسی آزمایشگاهی اثر الیاف شیشه بر چقرمگی شکست و انتشار ترک حالت I، حالت II و حالت ترکیبی I-II در بتن مسلح الیافی

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه بین المللی امام خمینی (ره)

چکیده

بتن، به‌عنوان پرکاربردترین مصالح معمولاً ارزان ترین مصالح موجود را در خود دارد. از این‌ رو به سبب بروز ترک و شکستگی می‌تواند خسارت‌های جبران‌ناپذیری را به بار آورد. به این منظور در سال‌های اخیر با ساخت بتن‌های الیافی مسلح، تا حدود زیادی ضعف‌های مذکور در آن بهبود یافته است. در این پژوهش با استفاده از روش آزمون روی دیسک برزیلی دارای ترک مستقیم ، پیش‌بینی روند انتشار ترک و چقرمگی شکست در نمونه‌های بتن بدون الیاف و نمونه‌های حاوی الیاف شیشه در درصدهای حجمی مختلف 0/2، 0/35 و 0/5بررسی شده است. علاوه بر این، فرآیند گسترش ترک از شکاف‌های از پیش موجود در نمونه‌ها و همچنین چقرمگی شکست در حالت‌های I، II و حالت ترکیبی I-II محاسبه شد. آزمایش دیسک برزیلی بر روی نمونه‌های موردمطالعه در زوایای 0، 15، 28/83، 45، 60، 75 و 90 درجه نسبت به راستای ترک از پیش موجود انجام شده است. پس از مطالعات آزمایشگاهی مشخص گردید که شروع ترک‌های باله‌ای در زوایای کم‌تر از 75 درجه از نوک ترک از پیش موجود اتفاق می‌افتد و با ادامه‌ی بارگذاری مسیر رشد و انتشار ترک به راستای بارگذاری نزدیک می‌گردد. این در حالی است که برای زوایای 75 درجه و بزرگ‌تر از آن، شروع ترک با فاصله d از نوک ترک آغاز می‌گردد. این فاصله در نمونه‌های فاقد الیاف بیشتر از نمونه‌های حاوی الیاف است. همچنین نتایج نشان می‌دهد چقرمگی شکست مود I، II و ترکیبی I-II با استفاده از مقادیر 0/2درصد الیاف شیشه بیش از چقرمگی شکست نمونه‌های فاقد الیاف می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental Investigating the Effect of Glass Fibre on Mode I, Mode II, and Mixed Mode (I-II) Fracture Toughness and Crack Propagation in Fibre-Reinforced Concrete

نویسندگان [English]

  • Mitra Hatami Jorbat
  • Mehdi Hosseini
  • Mahdi Mahdikhani
Imam Khomeini international university
چکیده [English]

Concrete is the most widely-used material in civil engineering and often contains the cheapest and most common matter. It can therefore cause irreparable damages due to cracks and fractures. The creation of fibre-reinforced concrete in recent years has largely rectified the aforementioned shortcomings. This study uses the direct crack Brazilian disk test to evaluate fracture toughness and crack propagation in fibre-free and glass fibre concrete samples in 0.2, 0.35 and 0.5 volume percentages. Moreover, fracture toughness and crack propagation from pre-existing cracks were calculated for samples in mode I, mode II, and mixed mode (I-II). The samples were subjected to the Brazilian disk test at 0, 15, 28.83, 45, 60, 75 and 90-degree angles relative to the pre-existing crack’s trajectory. Laboratory investigations showed that the wing crack at sub 75-degree (0<α <75) angles was initiated from the pre-existing fracture’s tip and approached loading trajectory as the load on the crack growth and propagation trajectory continued. At the same time, crack initiation at 75-degree angles and above begins at a distance of d from the tip, which is greater in fibre-free samples. The results also showed that using 0.2% glass fibre in mode I, II and mixed mode (I-II) resulted in a higher fracture toughness than fibre-free samples.

کلیدواژه‌ها [English]

  • crack propagation
  • fiber-reinforced concrete
  • mode I fracture toughness
  • mode II fracture toughness
  • mixed mode (I-II) fracture toughness
اقتداری، م.، قنبری، ا.، 1398. مطالعه آزمایشگاهی اثرات الیاف شیشه بر مقاومت مکانیکی بتن و مقایسه با بتن حاوی الیاف پلی‌پروپیلن، سومین کنفرانس ملی رویه‌های بتنی، تهران، انجمن بتن ایران، دانشگاه علم و صنعت ایران.
پایرو، پ.، 1392.  بتن مسلح الیافی، انتشارات فرهنگ و دانش.
جباری، الف. و حسینی، م. 1396. مروری بر متداول‌ترین آزمایشات چقرمگی شکست مود دوم اجرا شده بر روی نمونه‌های سنگ، دهمین کنگره ملی مهندسی عمران، 30-31 فروردین، دانشگاه صنعتی شریف، تهران، ایران.
حائری، ه.؛ شهریار، ک.، فاتحی مرجی، م.، معارف وند، پ.، 1392. استفاده از روش ناپیوستگی جابه‌جایی در تحلیل مکانیسم انتشار ترک‌ها در مواد شبه سنگی، نشریه روش‌های تحلیلی و عددی در مهندسی معدن، 3(5): 38-49.
حسامی، س.،  بزرگ نیا، ا.، 1397. رفتار شکست روسازی‌های بتنی حاوی الیاف، سومین کنفرانس بین‌المللی و چهارمین کنفرانس ملی مهندسی عمران و طراحی شهری، تبریز.
کریم داداشی، ر.؛ مهتدی بناب، م.،  قایدی، ح.، 1396. مکانیک شکست، نشر عطران.
کاتالوگ شرکت ایران برس، 1397.
Anderson,T.L., 1994., Fracture mechanics, fundamentals and application.
Ayatollahi, M.R. and Aliha, M.R.M., 2008. On the use of Brazilian disk specimen for calculating mixed mode I-II fracture toughness of rock materials, Engineering Fracture Mechanics, 75:4631-4641.
Behnia, M., Goshtasbi, K., Marji, MF., Golshani, A., 2014.Numerical simulation of crack propagation in layered formations, Arabian Journal of Geosciences 7 (7): 2729-2737.
Choi, Y. and Yuan, R., 2005. Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC, Cement and Concrete Research, 35: 1587-1591.
Erarslan, N., 2019. Analysing mixed mode (I-II) fracturing of concrete discs including chevron and straight through notch cracks, International Journal of Solids and Structures, 167: 79-92.
 Funatsu, T.,  Kuruppu, M.,  Matsui, K. 2014.  Effect of temperature and confining pressure on mixed mode (I-II) and mode II fracture toughness of Kimachi sandstone, International Journal of Rock Mechanics and Mining Sciences, 67:1-8.
Ghazvinian, A., Nejati, H., Sarfarazi, V., Hadei, M., 2013. Mixed mode crack propagation in low brittle rock-like materials, Arab J Geosci 6: 4435–4444.
Haeri, H., Shahriar, K., Marji, M. F., & Moarefvand, P., 2014. Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks. International Journal of Rock Mechanics and Mining Sciences, 67: 20-28.
Haeri, H., Sarfarazi, V., Fatehi Marji, M., & Hedayat, A., 2016. Experimental and Numerical Study of Shear Fracture in Brittle Materials with Interference of Initial Double Cracks. Acta Mechanica Solida Sinica, 29 (5): 555-566.
Krishnan, G.R.; Zhao, X.L.; Zaman, M. and Roegiers, J.C., 1998. Fracture Toughness of a Soft Sandstone, Int. J. Rock Mech. Min. Sci. 35(6): 695-710.
Lou, L.,  Li, X.,  Qiu, J.,  Zhu, Q., 2017. Study on Fracture Initiation and Propagation in a Brazilian Disc with a Preexisting Crack by Digital Image Correlation Method, Materials Science and Engineering, Article id 2493921, 13 pages.
Park, C.H.,  Bobet A., 2010. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,  Engin. Fract. Mech., 77: 2727-2748.
Park, C.H. & Bobet, A., 2009. Crack Coalescence in Specimens with open and closed flaws: A Comparison”. International Journal of Rock Mechanics and Mining Sciences, (46)5: 819-829.
Taheri Fard, A.,  Soheili, H.,  Ramzani, S.,  Ahmadi, P.,  2016. Combined Effect of Glass Fiber and Polypropylene Fiber on Mechanical Properties of Self-Compacting Concrete, Magazine of Civil Engineering, Issue 2:26-31.
Xiankai, B., Meng, T., Jinchang, Z., 2017.  Study of mixed mode fracture toughness and fracture trajectories in gypsum interlayers in corrosive environment, Royal Society Open Science, 5(1): 171374.
Yazici, S., Inan, G., Tabak, V., 2007. Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC, Construction and Building Materials, 21: 1250-1253.