بررسی اثر مینرالوژی و خصوصیات فیزیکومکانیکی سنگ منبع بر مقاومت فشاری بتن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مدیرعامل مجتمع ازمایشگاهی و آموزشگاهی ترازآب

2 هیئت علمی گروه زمین شناسی مهندسی دانشگاه فردوسی مشهد

چکیده

کانی شناسی و خصوصیات فیزیکی و مکانیکی سنگهای مورد استفاده در تولید سنگدانه‌ها، ازمهمترین پارامترها جهت تصمیم-گیری در انتخاب روش مصرف آنها برای اهداف مختلف مهندسی است. بتن از آن دسته فرآورده‌های تولیدی در صنعت ساختمان می‌باشد که بیشترین مصرف سنگ را بصورت مصالح خرده‌سنگی شن و ماسه در ساختمان خود دارد. در این مقاله اثر مینرالوژی و همچنین خصوصیات فیزیکومکانیکی سنگدانه بر مقاومت فشاری بتن با رده مقاومتی C25 مورد بررسی قرار گرفته است سنگهای منبع سنگدانه‌های مورد تحقیق، توده‌های نفوذی با ترکیب آندزیت و بازالت و سنگهای آهکی کریستالیزه و دولومیت می‌باشند که در شرق شهر اردبیل(ایران) رخنمون دارند. بمنظور انجام تحقیق، تعداد 20 نمونه از معادن و کارگاه-های شن و ماسه فعال در منظقه برداشت و آزمایشات فیزیکی و مکانیکی و سنگ‌نگاری و کانی‌شناسی بعمل آمد. سپس نسبت اجزای سازنده بتن بروش ACI مشخص گردید بطوریکه در کلیه طرح‌ها نسبت آب به سیمان ثابت نگه داشته شده و هیچ نوع افزودنی مصرف نشده است. برای تجزیه و تحلیل نتایج، توده‌سنگهای منطقه براساس جنس و ترکیب کانی‌شناسی به چهار رده تقسیم شده و اثر خصوصیات فیزیکومکانیکی آنها بر مقاومت بتن در هر رده بطور جداگانه بررسی شد. نتایج نشان می دهند که مقاومت بتن ساخته شده با توده سنگ آندزیتی(رده II) دارای بالاترین مقدار و رده IV (توده سنگ دولومیتی) دارای کمترین مقدار مقاومت می‌باشد همچنین بتن ساخته شده با سنگهای آهکی(رده III) بسته به خصوصیات متفاوت کانی‌شناسی و فیزیکومکانیکی، طیف گسترده‌ای از مقاومت را ارائه می دهند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the effect of mineralogy and physicomechanical properties of source rock on compressive strength of concrete

نویسندگان [English]

  • hassan mohammadi golestan 1
  • Mohammad Ghafoori 2
1 Compani
2 Faculty of Geology, Ferdowsi University of Mashhad
چکیده [English]

Mineralogy and physical and mechanical properties of rocks used in the production of aggregates are the most important parameters for deciding on the method of their use for various engineering purposes. Concrete is one of the products produced in the construction industry that has the highest consumption of stone in the form of sand gravel materials in its building. In this paper, the effect of mineralogy as well as physicomechanical properties of aggregate on the compressive strength of concrete with C25 strength class has been investigated. They are exposed in the east of Ardabil (Iran). In order to conduct research, 20 samples of mines and sand workshops active in the harvest area and physical and mechanical tests and lithography and mineralogy were performed. Then, the ratio of concrete components by ACI method was determined so that the ratio of water to cement was kept constant in all designs and no additives were used. To analyze the results, the rock masses of the region were divided into four categories based on the type and mineralogical composition and the effect of their physicomechanical properties on the strength of concrete in each category was investigated separately. The results show that the strength of concrete made with andesitic rock mass (class II) has the highest value and class IV (dolomitic rock mass) has the lowest value. Also, concrete made of limestone (class III) depending on different characteristics Mineralogy and physicomechanics offer a wide range of resistances.

کلیدواژه‌ها [English]

  • Rock
  • concrete
  • strength
  • aggregate
  • mineralogy
امیرکیایی، و.، قاسمی، و.، فرامرزی، ل.، 1399، "ارزیابی دوام طولانی مدت سنگهای ساختمانی کربناته بعد از چرخه های ذوب و انجماد"، مجله انجمن زمین­شناسی مهندسی ایران، جلد سیزدهم، پائیز 99، شماره 3، صفحه. 67-81 .
پیران قرنی، س.، جاوید، ا.ح.، قدوی، ج.، 1397، "بررسی تاثیر سازندهای زمین­شناسی بر روی کیفیت منابع اب زیرزمینی(مطالعه موردی؛ دشت اردبیل)، نشریه علوم و تکنولوژی محیط زیست، دوره 20، شماره 3، ص. ا تا 10.
خانلری،غ.، ناصری، ف.، عثمان پور، آ.، 1397، معرفی شاخص جدید سنگدانه(AI) با استفاده از ویژگیهای پتروگرافی و ژئومکانیکی(مطالعه موردی: سنگ آهکهای استان همدان، نشریه زمین­شناسی مهندسی ایران، شماره 1-2.
سازمان ملی استاندارد ایران،1399، استاندارد ملی شماره 302: سنگدانه های بتن-ویژگیها، ویرایش چهارم. 46 ص.
شعبانی،م.، پیرمحمدی علیشاه،ف.،1397، بررسی و شناسایی کیفیت سنگدانه­های بتن در برابر زلزله در شهرستان میانه،کنفرانس عمران، معماری و شهرسازی کشورهای جهان اسلام، تبریز.
عقیلی لطف، م.، رمضانیانپور، ا.م.، 1397، بررسی همبستگی بین پارامترهای مختلف فیزیکی و مکانیکی بتن های ساخته شده با سنگدانه بازیافتی بتنی، نشریه فنی مهندسی مدرس، دوره 18، شماره 3، ص. 153-167.
فتاحی، م.، خبیری، م.م.، یار احمدی بافقی، ع.، 1397، اثر کاربرد سنگدانه های باطله معدنی بر عملکرد مقاومتی روسازی بتن غلتکی، پژوهشنامه حمل و نقل، دوره 15، شماره 55، ص.119-134.

قلمقاش، ج.، کتابی، ز.، 1399، "بررسی و مقایسه پتروگرافی و ژئوشیمی سنگ های آتشفشانی قدیمی و جوان سبلان"، بیست و سومین همایش انجمن زمین شناسی ایران، تهران.

مبشرگرمی، م.، جهانگیری، ا.، 1396، زمین شناسی و سنگ زائی منشورهای بازالتی جنوب شهرستان گرمی(استان اردبیل)، نشریه پترولوژی، دوره 8، شماره 31، ص. 165 تا 188.

ACI-211.1-91:American Concrete Institute,2002,''Standard for Selecting Proportions for Normal, Heavyweight and Mass Concrete,Farmington Hills, MI, USA.
Ahlrich, A.C.,1996,''Influence of aggregate properties on heavy duty pavements'', Transportation Research Record No.1547, Transportation Research Board, Washington DC, pp. 8-14.
Amritkar, S.S., Chandak, S.N., Patil, S.S., Jadhav, R.A., 2015,''Effect of waste foundry sand (WFS) on the mechanical properties of concrete with artificial sand as fine aggregate'', Int. J. Eng. Res. Technol. 4, 390–393.
ASTM C39M,2014,''Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens''.
ASTM C117,2013, ''Standard Test Method for Materials Finer than 75-micron(No. 200) Sieve in Mineral Aggregates by Washing''.
ASTM C131,2009, ''Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine''.
ASTM C136,2006,''Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates''.
ASTM C192M,2013,''Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory''.
ASTM D4318-17e1,2017,''Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils'', ASTM International, West Conshohocken.
ASTM D4543-19,2019,''Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances''. ASTM International,West Conshohocken, PA.
Aquino, C., Inoue, M., Miura, H., Mizuta, M., Okamoto, T., 2010, "The effects of limestone aggregate on concrete properties", Construction and Building Materials, Vol. 24 (12): 2363-2368.
Bismark, M., Charle, K., Thomas, B.,2018, ''Effect of quarry rock dust on the flexural strength of concrete'', Case Studies in Construction Materials, V.8,P.16-22.
Bowen,N.L.,1956,''The Evolution of the Igneous Rocks'',Canada:Dover.pp.60–62.
Dunham, R. J., 1962, ''Classification of carbonate Rocks according to depositional texture''. In: Ham, W. E. (ed.), Classification of carbonate Rocks: American Association of Petroleum Geologists Memoir, p. 108-121.
EN932:EuropenStandard,1996,Part3:Procedure and Terminology for Simplified  Petrographic Description,Warsaw,Poland.
Folk, R.L., 1962, Spectral subdivision of limestone types, in Ham, W.E., ed., Classification of carbonate Rocks-A Symposium: American Association of Petroleum Geologists Memoir 1, p. 62-84.
Giannakopoulou, P.P., Tsikouras, B., Hatzipanagiotou, K.,2016, ''The interdependence of mechanical properties of ultramafic rocks from Gerania ophiolitic complex'', Bull. Geol. Soc. Greece 2016, 50, 1829–1837.
Gogoi, I.B., Goaswami, D., Deka, G., 2015,"A Study of River-Borne Aggregates of River Nanoi as Construction Material", SSRG International Journal of Civil Engineering (SSRG-IJCE), vol. 2, no. 5.
Gonilho Pereira, C., Castro-Gomes, J., Pereira de Oliveira,L.,2009, ''Influence of natural coarse aggregate size,mineralogy and water content on the permeability of structural concrete'', Constr. Build. Mater., 23,602–608.
Hossain, M.S., Parker, F., Kandhal, P.S., 2000,''Comparison and evaluation of tests for coarse aggregate particle shape, angularity, and surface texture, Journal of testing and Evaluation'', 28 (2), pp. 77-7.
ISRM Suggested Methods,1981,''Rock Characterization Testing and Monitoring'', Brown, E., Ed.;Pergamon Press:Oxford, UK, 211p.
Kanan,K., Subramanian, M.A., Aleen,j., 2014, ''Optimum mix as partial replacement of fine aggregate in concrete'', Int, J. Res. Eng. Technol. Manag.2, P.1-5.
Li, P.P., Yu, Q.L., Brouwers, H.J.H., 2018, ''Effect of coarse Basalt Aggregates on the properties of ultra-highperformance Concrete. Construction and Building Materials'',V.170, P:649-659.
Mibei, G., 2014, ''Introduction to type and classification of rocks'', Exploration for Geotermal Resources,  Kenya. Nov.2-24.
Özturan,T.,Çeçen,C.,2007,''Effect of coarse aggregate type on mechanical properties of concretes with different strengths'', Cem. Concr.,27, 165–170.
Petrounias, P., Giannakopoulou, P.P., Rogkala, A., Lampropoulou, P., Koutsopoulou, E., Papoulis, D.,Tsikouras, B., Hatzipanagiotou, K., 2018,''The Impact of Secondary Phyllosilicate Minerals on the Engineering Properties of Various Igneous Aggregates from Greece'', Minerals, 8, 329.
Piasta, W., Góra, J., Turkiewicz, T.,2016, ''Properties and durability of coarse igneous rock aggregates and concretes'',Constr. Build. Mater., 126, 119–129.
Poloju, K.K., Anil, V., Manchiryal, R.K., 2017, "Properties of Concrete as Influenced by Shape and Texture of Fine Aggregat" American Journal of Applied Scientific Research, No3(3):28-36.
Rangaraju,P.R., Olek, J., Diamond, S.,2010,'' An investigation into the influence of inter-aggregate spacing and the extent of the ITZ on properties of Portland cement concretes'', Cement and Concrete Research, Volume 40, Issue11, November, Pages. 1601-1608.
Rigopoulos, I., Tsikouras, B., Pomonis, P., Hatzipanagiotou, K.,2012, ''The impact of petrographic characteristics on the engineering properties of ultrabasic rocks from northern and central Greece'', Q. J. Eng. Geol. Hydrogeol, 45, 423–433.
Rahman, M.A., Imteaz, M., Arulrajah, A., Disfani, M.M., 2015, ''Suitability of recycled construction and demolition aggregates as alternative pipe backfilling materials'', J. Clean. Prod. 66, 75–84.
Saawati, C.P., Jaykrushna, K.R., Palas, A.S., Jay, G.M., Ankti, N.P., 2013, ''Application of waste foundry sand for evolution of low cost concrete'', Int.J.Eng. Trends. Technol. 4,4281-4286.
Thorpe, M.T., Rogers, D., Bristow, F., Pan, C., 2015, ''Quantitative compositional analysis of sedimentary materials using thermal emission spectroscopy: Application to sedimentary rocks'', Journal of Geophysical Research:Planets,By Doi: 10.1002/2015JE004863.
Wright, P.J.F., 1955,'' A method for measuring the surface texture of  aggregate'', Magazine of Concrete Research, 5 (2), pp.151-160.
Yilmaz, M.; Tugrul, A.,2012,''The effects of different sandstone aggregates on concrete strength'', Constr. Build. Mater., 35, 294–303.
 
 
Yilmaz, N.G., Goktan, R.M., Kibici, Y.,2011,''Relations between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones',Int. J. Rock Mech. Min. Sci., 48, 506–513.
Zheng, J.J., Zhou, X.Z., 2013,''Effective medium method for predicating the chloride diffusivity in concrete'', eith ITZ percolation effect Construction and Building Material,Volume 47,October,page.1093-1098.