تأثیر استفاده از چسباننده‌های قلیافعال بر دوام بتن سبک سازه‌ای در برابر محیط‌های آسیب‌رسان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه زنجان، زنجان، ایران.

2 استادیار دانشگاه زنجان، زنجان، ایران

3 گروه پژوهشی ساختمانی و معدنی، پژوهشگاه استاندارد، سازمان ملی استاندارد. کرج. ایران

چکیده

استفاده از مصالح سنگی سبک و چسباننده‌های قلیافعال جایگزین شن و سیمان در تولید بتن سبب جلوگیری از انتشار بیشتر گازهای گلخانه‌ای، صرفه جویی در انرژی و کاهش بارهای مرده سازه می‌گردد. در این پژوهش از درشت دانه متخلخل از جنس سنگ لاوا جهت کاهش چگالی بتن و نیز از سرباره و خاکستر بادی قلیافعال، به عنوان مصالح جایگزین سیمان پرتلند استفاده شده است. فعال‌سازی قلیایی پوزولان‌ها توسط محلول‌های سدیم هیدروکسید 14 مولار و سدیم سیلیکات با نسبت جرمی 1 به 2 انجام گرفته است. تهاجم یون‌های کلراید، سولفات و ترکیب سولفات و کلراید، در برنامه آزمایشگاهی در نظر گرفته شده‌اند. بتن، با سرباره قلیافعال و نسبت‌های مختلف سرباره و خاکستر بادی جهت فعال‌سازی قلیایی و سیمان پرتلند هیدراته نیز جهت معیار مقایسه انتخاب شده‌اند. با توجه به آزمایش‌های صورت گرفته، بتن با سیمان پرتلند در برابر تهاجم ترکیبی با نزدیک 10% کاهش در مقاومت فشاری سریع‌ترین زوال را داشته، بیشترین مقاومت فشاری را بتن قلیافعال سرباره‌ای به میزان MPa 55 داشته و با افزایش جایگزینی خاکستر بادی، مشخصات مکانیکی کوتاه مدت ضعیف‌تر شده اما با کاهش افت جذب آب به طور متوسط به مقدار حدوداً 12% دوام طولانی مدت و محافظت از آرماتور مدفون در بتن افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Using Alkaline Adhesives on the Durability of Lightweight Structural Concrete against Harmful Environments

نویسندگان [English]

  • Arash Shahani 1
  • Jamal Ahmadi 2
  • Behzad Saeedi Razavi 3
1 Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan, Iran.
2 Assistant perofessor, University of Zanjan, Zanjan, Iran
3 Construction & Mining Faculty, Standard Research Institute, Iranian National Standard Organization (INSO)-Karaj- Iran
چکیده [English]

The use of lightweight stone materials and alkaline adhesives to replace gravel and ordinary Portland cement in concrete production prevents the emission of a significant portion of greenhouse gases, saves energy, and reduces the dead load of the structure. In this study, porous coarse-grained lava rock has been used to reduce the density of concrete, as well as slag and fly ash, as alternative materials to ordinary Portland cement in concrete production. Alkaline activation of the pozzolans was performed by solutions of 14 M sodium hydroxide and sodium silicate with a mass ratio of 1: 2. Chloride ion invasion, sulfate invasion, and the combination of sulfate and chloride invasion are on the research laboratory agenda. Concrete with alkaline slag and different ratios of slag and fly ash for alkaline activation and hydrated Portland cement have also been selected for comparison. According to the obtained results, Portland cement concrete tolerated the fastest deterioration against combined aggression with a reduction of almost 10% in compressive strength, the highest compressive strength was 55 MPa slag concrete, and with increasing fly ash replacement, the short-term mechanical properties are weakened, but with decreasing water absorption loss, on average, by about 12%, the long-term durability and protection of reinforced concrete increases.

کلیدواژه‌ها [English]

  • Alkali activated concrete
  • Durability
  • Lightweight concrete
  • Aggressive environment
  • Reinforcement corrosion
بهفرنیا, ک., کیاچهر و رستمی, 2018. تأثیر نسبت محلول قلیایی به سرباره بر نفوذپذیری بتن قلیا‌فعال سرباره‌ای. مهندسی عمران فردوسی, 31(1), pp.99-112..
Abdalkader, A., Lynsdale, C. and Cripps, J., 2017. Corrosion behavior of steel rebar in mortars subjected to magnesium sulfate and sodium chloride mixtures at 5 and 20 C. Construction and Building Materials, 153, pp.358-363.
Albitar, M., Ali, M.M., Visintin, P. and Drechsler, M., 2017. Durability evaluation of geopolymer and conventional concretes. Construction and Building Materials, 136, pp.374-385.
ASTM, C.128, 2015. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM international.
ASTM, C143/C143M, 2012. Standard Test Method for Slump of Hydraulic-Cement Concrete. USA: ASTM International.
ASTM, C.29 / C29M, 2017. Standard Test Method for Bulk Density (‘Unit Weight’) and Voids in Aggregate. ASTM international.
ASTM, C. 496/C 496M, 2004. Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
ASTM Committee C-09 on Concrete and Concrete Aggregates, 2013. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM international.
Atahan, H.N. and Dikme, D., 2011. Use of mineral admixtures for enhanced resistance against sulfate attack. Construction and Building Materials, 25(8), pp.3450-3457.
BS 1881, 1983. Method for determination of compressive strength of concrete cubes. BS 1881: Part 116:1983. London: British Standards Institution.
Bakharev, T., 2005. Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and concrete research, 35(6), pp.1233-1246.
Bondar, D., 2009. Alkali activation of Iranian natural pozzolans for producing geopolymer cement and concrete (Doctoral dissertation, University of Sheffield).
Dixon, D.E., Prestrera, J.R., Burg, G.R., Chairman, S.A., Abdun-Nur, E.A., Barton, S.G., Bell, L.W., Blas Jr, S.J., Carrasquillo, R.L., Carrasquillo, P.M. and Carter, A.C., 1991. Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete.
Duxson, P., Fernández-Jiménez, A., Provis, J.L., Lukey, G.C., Palomo, A. and van Deventer, J.S., 2007. Geopolymer technology: the current state of the art. Journal of materials science, 42(9), pp.2917-2933.
Fernández-Jiménez, A., Garcia-Lodeiro, I. and Palomo, A., 2007. Durability of alkali-activated fly ash cementitious materials. Journal of Materials Science, 42(9), pp.3055-3065.
Glukhovsky, V.D., 1994. Ancient, modern and future concretes. In Proceedings of the First International Conference on Alkaline Cements and Concretes (pp. 1-9). Kyiv, Ukraine.
Habert, G., 2013. Environmental impact of Portland cement production. In Eco-efficient concrete (pp. 3-25). Woodhead Publishing.
Humphreys, K. and Mahasenan, M., 2002. Towards a sustainable cement industry. Substudy 8: climate change.
Ismail, I., Bernal, S.A., Provis, J.L., Hamdan, S. and van Deventer, J.S., 2013. Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure. Materials and Structures, 46(3), pp.361-373.
Jo, B.W., Park, S.K. and Park, J.B., 2007. Properties of concrete made with alkali-activated fly ash lightweight aggregate (AFLA). Cement and Concrete composites, 29(2), pp.128-135.
Kim, Y.Y., Lee, B.J., Saraswathy, V. and Kwon, S.J., 2014. Strength and durability performance of alkali-activated rice husk ash geopolymer mortar. The Scientific World Journal.
Krivenko, P., Rudenko, I., Konstantynovskyi, O. and Boiko, O., 2021. Prevention of steel reinforcement corrosion in alkali-activated slag cement concrete mixed with seawater. In E3S Web of Conferences (Vol. 280). EDP Sciences.
Lawrence, C.D., 1998. The production of low-energy cements. Lea’s chemistry of cement and concrete, 4.
Mangat, P.S., Ojedokun, O.O. and Lambert, P., 2021. Chloride-initiated corrosion in alkali activated reinforced concrete. Cement and Concrete Composites, 115, p.103823.
Mehta, P.K. and Monteiro, P.J., 2014. Concrete: microstructure, properties, and materials. McGraw-Hill Education.
Mithun, B.M. and Narasimhan, M.C., 2016. Performance of alkali activated slag concrete mixes incorporating copper slag as fine aggregate. Journal of Cleaner Production, 112, pp.837-844.
Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Palomo, A. and Chindaprasit, P. eds., 2014. Handbook of alkali-activated cements, mortars and concretes. Elsevier.
Prestera, J.R., Boyle, M., Crocker, D.A., Chairman, S.B., Abdun-Nur, E.A., Barton, S.G., Bell, L.W., Blas Jr, S.J., Berg, G.R., Carrasquillo, P.M. and Carrasquillo, R.L., 1998. Standard Practice for Selecting Proportions for Structural Lightweight Concrete.
Rangan, B.V., 2008. Fly ash-based geopolymer concrete.
Rashad, A.M., 2014. A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials & Design, 53, pp.1005-1025.
Roy, D.M. and Idorn, G.M., 1982. Development of structure and properties of blast furnace slag cements. J. Amer. Concr. Inst, 97, pp.444-457.
Ryu, G.S., Lee, Y.B., Koh, K.T. and Chung, Y.S., 2013. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and building materials, 47, pp.409-418.
Sarıdemir, M. and Çelikten, S., 2020. Investigation of fire and chemical effects on the properties of alkali-activated lightweight concretes produced with basaltic pumice aggregate. Construction and Building Materials, 260, p.119969.
Shaikh, F.U., 2014. Effects of alkali solutions on corrosion durability of geopolymer concrete. Advances in concrete construction, 2(2), p.109.
Shi, C. and Fernández-Jiménez, A., 2006. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements. Journal of hazardous materials, 137(3), pp.1656-1663.
Shi, C., Roy, D. and Krivenko, P., 2003. Alkali-activated cements and concretes. CRC press.
Taylor, H.F.W., 1990. Cement Chemistry Academic Press: London.
Valencia Saavedra, W.G., Angulo, D.E. and Mejía de Gutiérrez, R., 2016. Fly ash slag geopolymer concrete: Resistance to sodium and magnesium sulfate attack. Journal of Materials in Civil Engineering, 28(12), p.04016148.
Wang, W.C., Wang, H.Y. and Lo, M.H., 2015. The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration. Construction and Building Materials, 84, pp.224-229.
Wardhono, A., Law, D.W. and Strano, A., 2015. The strength of alkali-activated slag/fly ash mortar blends at ambient temperature. Procedia Engineering, 125, pp.650-656.
Yang, L.Y., Jia, Z.J., Zhang, Y.M. and Dai, J.G., 2015. Effects of nano-TiO2 on strength, shrinkage and microstructure of alkali activated slag pastes. Cement and Concrete Composites, 57, pp.1-7.
Zhu, H., Zhang, Z., Zhu, Y. and Tian, L., 2014. Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars. Construction and Building Materials, 65, pp.51-59.