مطالعه آزمایشگاهی تاثیر افزودن الیاف و مصالح فرآوری شده معدنی بر روی بتن ژئوپلیمری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری عمران سازه، گروه مهندسی عمران، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران

2 گروه مهندسی عمران، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران

3 گروه مهندسی عمران، واحد لاهیجان، دانشگاه آزاد اسلامی، لاهیجان، ایران

چکیده

بتن ژئوپلیمری در راستای رفع معایب (نظیر استحکام پایین و مضرات محیط زیستی) ناشی از مصرف بتن معمولی در سازه‌ها مطرح گردید. در ساخت این نوع از بتن، مواد ژئوپلیمری فرآوری شده حاصل از منابع معدنی مانند سرباره و نانوسیلیس جایگزین سیمان می شود و بتن مستحکم ژئوپلیمری را تولید می کند. در این پژوهش آزمایشگاهی به ساخت یک طرح اختلاط از بتن کنترل حاوی سیمان پرتلند پرداخته شد. سپس بتن ژئوپلیمری در سه طرح تولید گردید. طرح اول، حاوی 100 درصد سرباره کوره آهنگدازی و طرح دوم و سوم حاوی 92 درصد سرباره کوره آهنگدازی و 8 درصد نانوسیلیس، به ترتیب حاوی 1 و 2 درصد الیاف پلی الفین (در مجموع 4 طرح اختلاط) است. در ادامه، آزمون های مدول الاستیسیته و مقاومت کششی در سن عمل آوری 7 و 28 روزه در دمای اتاق، بر روی نمونه های بتنی انجام گرفت. آزمون SEM در سن عمل آوری 90 روزه، بمنظور صحت سنجی با سایر نتایج، بر روی نمونه‌های بتنی انجام گرفت. نتایج حاکی از این موضوع است که افزایش سن عمل آوری در بتن، موجب بهبود نتایج شد. در آزمون مدول الاستیسیته و مقاومت کششی، افزودن الیاف به بتن ژئوپلیمری در سن 28 روزه، به ترتیب موجب بهبود 19/21 و 07/24 درصدی نتایج در طرح4 (2 درصد الیاف) نسبت به طرح2 (فاقد الیاف) شد. افزایش الیاف موجب بهبود نتایج آزمون‌های مقاومت کششی و مدول الاستیسیته بتن ژئوپلیمری در مقایسه با بتن کنترل شد. نتایج آزمون SEM در همپوشانی با نتایج سایر آزمون‌ها قرار گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study of the effect of adding fibers and mineral processed materials on geopolymer concrete

نویسندگان [English]

  • Mohammadhossein mansourghanaei 1
  • Morteza Biklaryan 2
  • Alireza Mardookhpour 3
1 Ph.D Student in Civil Engineering, Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran
2 Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran
3 Department of Civil Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
چکیده [English]

Geopolymer concrete was proposed in order to eliminate the disadvantages (such as low strength and environmental damage) caused by the use of ordinary concrete in structures. In making this type of concrete, processed geopolymer materials from mineral sources such as slag and nanosilica replace cement and produce strong geopolymer concrete. In this laboratory research, a mixing design was made of control concrete containing Portland cement. Then geopolymer concrete was produced in three designs. The first design contains 100% of the slag of the composing furnace and the second and third designs contain 92% of the slag of the composing furnace and 8% of nanosilica, respectively, containing 1 and 2% of polyolefin fibers (4 mixing designs in total). Then, modulus of elasticity and tensile strength tests at 7 and 28 days of processing time at room temperature were performed on concrete samples. SEM test was performed on concrete samples at 90 days of age for validation with other results. The results indicate that increasing the curing age of concrete improved the results. In the modulus of elasticity and tensile strength test, the addition of fibers to geopolymer concrete at the age of 28 days, improved the results in Figure 19 (2% of fibers) compared to Figure 2 (no fibers) by 21.19 and 24.07%, respectively. Increasing the fibers improved the results of tensile strength tests and modulus of elasticity of geopolymer concrete compared to control concrete. The results of the SEM test overlapped with the results of other tests.

کلیدواژه‌ها [English]

  • Geopolymer concrete
  • Blast furnace slag
  • Nano silica
  • Polyolefin fibers
  • Tensile strength
Adhikary, S. K., Rudzionis, Z., Balakrishnan, A., & Jayakumar, V. 2019. Investigation on the mechanical properties and post-cracking behavior of polyolefin fiber reinforced concrete. Fibers, 7(1), 8.‏
Alberti, M., Enfedaque, A., & Gálvez, J. 2015. Improving the reinforcement of polyolefin fiber reinforced concrete for infrastructure applications. Fibers, 3(4), 504-522.
Assaedi, H., Alomayri, T., Shaikh, F., & Low, I. M. 2019. Influence of nano silica particles on durability of flax fabric reinforced geopolymer composites. Materials, 12(9), 1459.‏
Dabbagh, H., & Akbarpour, S. 2017. Behavior of Structural Lightweight Concrete Containing Nano Silica and Steel Fibers under Compressive Monotonic Loading. Concrete Research, 10(1), 35-46.
Davidovits, J. 2008. Geopolymer chemistry and application 2nd ed. Institut Géopolymère, France.
Deb, P. S., Sarker, P. K., & Barbhuiya, S. 2015. Effects of nano-silica on the strength development of geopolymer cured at room temperature. Construction and building materials, 101, 675-683.‏
Duan, P., Shui, Z., Chen, W., & Shen, C. 2013. Enhancing microstructure and durability of concrete from ground granulated blast furnace slag and metakaolin as cement replacement materials. Journal of Materials Research and Technology, 2(1), 52-59. ‏
Ehsani, A., Nili, M., & Shaabani , K. 2017. Effect of nanosilica on the compressive strength development and water absorption properties of cement paste and concrete containing Fly Ash. KSCE Journal of Civil Engineering, 21(5), 1854-1865.
Ekinci, E., Türkmen, İ., Kantarci, F., & Burhan Karakoç, M. 2019. The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Construction and Building Materials, 201, 257-267.
Enfedaque, A., Alberti, M. G., Paredes, J. A., & Gálvez, J. C. 2017. Interface properties of polyolefin fibres embedded in self-compacting concrete with a bond improver admixture. Theoretical and Applied Fracture Mechanics, 90, 287-293. ‏
Hajikarimi, P., & Fallah, H. S. 2019. Investigation on the Effect of Volume, Length and Shape of Polyolefin Fibers on Mechanical Characteristics and Fracture Properties of High-Strength Concrete. ‏
Hongjian, D., Suhuan , D., & Liu, X. 2014. Durability performances of concrete with nano-silica. Construction and building materials, 73, 705-712.
Kwan, W. H., Ramli, M., Kam, K. J., & Sulieman, M. Z. 2012. Influence of the amount of recycled coarse aggregate in concrete design and durability properties. Construction and Building Materials, 26(1), 565-573.
Mehdipour, S., Nikbin, I. M., Dezhampanah, S., Mohebbi, R., Moghadam, H., Charkhtab, S., & Moradi, A. 2020. Mechanical properties, durability and environmental evaluation of rubberized concrete incorporating steel fiber and metakaolin at elevated temperatures. Journal of Cleaner Production, 254, 120126.‏
Mehta, P. K., & Monteiro, P. J. 2014. Concrete: microstructure, properties, and materials. McGraw-Hill Education.
Mohtasham Moein, M., Mousavi, S. Y., Madandoust, R., & Naser Saeid, H. N. S. 2019. The Impact Resistance of Steel Fiber Reinforcement Concrete under Different Curing Conditions: Experimental and Statistical Analysis. Journal of Civil and Environmental Engineering, 49(94), 109-121. ‏
Moradikhou , A., Hosseini , M., Mousavi Kashi, A., Emami , F., & Esparham , A. 2020. Effect of Simple and Hybrid Polymer Fibers on Mechanical Strengths and High-temperature Resistance of Metakaolin-based Geopolymer Concrete. Modares Civil Engineering journal, 20(2), 147-164.
Neupane, N., Chalmers, D., & Kidd, P. 2018. High-strength geopolymer concrete—properties. advantages and challenges. Advances in Materials, 7(2), 15-25.
Nosrati, A., Zandi, Y., Shariati, M., Khademi, K., Aliabad, M. D., Marto, A., ... & Khorami, M. 2018. Portland cement structure and its major oxides and fineness. Smart structures and systems, 22(4), 425-432. ‏
Noushini, A., Castel, A., & Gilbert, R. I. 2019. Creep and shrinkage of synthetic fibre-reinforced geopolymer concrete. Magazine of Concrete Research, 71(20), 1070-1082.‏
Noushini, A., Hastings, M., Castel, A., & Aslani, F. (2018). Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Construction and Building Materials, 186, 454-475.‏
Nuaklong, P., Sata, V., & Chindaprasirt, P. 2016. Influence of recycled aggregate on fly ash geopolymer concrete properties. Journal of Cleaner Production, 112, 2300-2307.‏ [3]     Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. 2015. Geopolymer concrete: A review of some recent developments. Construction and building materials, 85, 78-90.‏
Ryu, G. S., Lee, Y. B., Koh, K. T., & Chung, Y. S. 2013. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construction and building materials, 47, 409-418.‏
Smirnova, O., Kharitonov, A., & Belentsov, Y. 2019. Influence of polyolefin fibers on the strength and deformability properties of road pavement concrete. Journal of Traffic and Transportation Engineering (English Edition), 6(4), 407-417. ‏
Vora, P., & Urmil V, D. 2013. Parametric studies on compressive strength of geopolymer concrete. Procedia Engineering, 51, 210-219.
Yousefvand, M., Sharifi, Y., & Yousefvand, S. 2019. An Analysis of the Shear Strength and Rupture Modulus of Polyolefin-Fiber Reinforced Concrete at Different Temperatures. Journal of civil Engineering and Materials Application, 3(4), 225-233.‏
Yousefi, R., Amel sakhi, M., Karimi, A. 2021. Effect of adding urease enzyme on uniaxial strength of soil stabilized by cement and zeolite. Scientific Quarterly Journal of Iranian Association of Engineering Geology, 14(2), 43-57.
Yunsheng, Z., Sun , W., & Li , Z. 2010. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 47(3-4), 271-275.
Zhang, Z. H., Yao, X., Zhu, H. J., Hua, S. D., & Chen, Y. 2009. Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. Journal of Central South University of Technology, 16(1), 49-52. ‏‏
Zhuang, X. Y., Chen, L., Komarneni, S., Zhou, C. H., Tong, D. S., Yang, H. M., ... & Wang, H. 2016. Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 125, 253-267.‏