تخمین مقدار تغییر شکل در اطراف تونل و تأثیر نسبی پارامترهای ژئومکانیکی بر آن با استفاده از شبکه عصبی مصنوعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مکانیک سنگ، بخش معدن، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس

2 دانشجوی کارشناسی ارشد مکانیک سنگ، بخش معدن، دانشکده فنی و مهندسی، دانشگاه تربیت مدرس

چکیده

یکی از مسائلی که در تحلیل برگشتی اهمیت بسزائی دارد، تحلیل تغییر شکل‌های اندازه‌گیری شده و نحوه رفتار تونل­های حفر شده در سنگ است. روش متداول در این گونه موارد تحلیل عددی سازه زیرزمینی است. به عنوان یک روش مناسب جایگزین، شبکه عصبی آموزش دیده بر مبنای الگوهای تحلیل شده توسط روش­های عددی، علاوه بر این که به دقت مورد نیاز در روش­های عددی می­رسد، سادگی و سهولت استفاده از آن از سایر روش­ها بیشتر بوده و نیازی به یادگیری نرم­افزار و نیز دانش روش­های عددی نداشته و سرعت آن نیز بالاتر است. در این تحقیق مدلی مبتنی بر شبکه عصبی چند لایه پرسپترون برای پیش­بینی رفتار تونل، پس از حفر ارائه شده است. متغیرهای ورودی در نظر گرفته شده مدول الاستیک، نسبت پواسون، مقاومت کششی، چسبندگی و زاویه اصطکاک داخلی توده سنگ، مقدار تنش اولیه قائم و نسبت تنش افقی به قائم می‌باشند. برای آموزش شبکه از بانک اطلاعاتی بدست آمده از 183 آنالیز پایداری تونل توسط نرم­افزار FLAC استفاده شد. سپس با توجه به رفتار شبکه در آموزش و آزمون مقادیر مناسبی برای تعداد لایه­های میانی، تعداد نرون­ها و توابع فعالیت آنها بدست آمد. به این ترتیب مدلی مبتنی بر شبکه عصبی ساخته شد که بدون داشتن دانشی از نحوه رفتار سنگ قادر به پیش­بینی رفتار آن بود. در ادامه با استفاده از روابط موجود در شبکه عصبی، فاکتوری به نام RSE معرفی شده که تأثیر نسبی پارامتر i در ورودی بر پارامتر k در خروجی را نشان می‌دهد. با مطالعه RSE می‌توان نتیجه گرفت که هر پارامتر سهم خاصی بر رفتار توده سنگ دارد و برخی پارامترها در هر حال تأثیر کمی دارند. لذا بهتر است در انجام تحلیل­های آنالیز برگشتی و یا تحلیل فضاهای زیرزمینی در ابتدا توجه بیشتری به پارامترهای تأثیرگذارتر نمود. در انجام عملیات ژئوتکنیکی نیز با توجه به این مساله و دانستن مقدار اهمیت هر پارامتر می­توان حجم عملیات مختلف را به صورت بهینه تعیین کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of deformation in around a tunnel and reviewing relative effect of geomechanical parameters on the deformation using artificial neural net work

نویسندگان [English]

  • Morteza Ahmadi 1
  • Jalil Ebrahimpou 2
1 1. Tarbiat Modarres University, Faculty of Engineering, Department of Rock mechanic
2 2. M.Sc. Student of Rock mechanics , Tarbiat Modares University, Faculty of Engineering
چکیده [English]

One of the most important parameters in back analysis is analysis of measured deformations of excavated tunnel. Numerical methods as a conventional method are used for back analysis. An artificial neural network that has been trained with sufficient number of examples made with numerical methods can be used instead of them. These networks are accurate enough and faster than numerical methods and an operator can utilize it without knowledge of rock mechanics or numerical methods.
In this research, a multilayer artificial neural network has been presented which is able to predict deformations around a tunnel after excavation. Input parameters of this artificial network are deformation modulus, Poisson ratio, tensile strength, cohesion, friction angle, initial vertical stress and horizontal to vertical stress ratio.
A tunnel model with 183 cases was executed with ''FLAC'' code and results (deformations) as a database was used for training and testing of the neural network. By training and testing of different neural networks, optimized values for layers and nods and architecture were found. According to obtained results, a neural network was selected. This network was able to predict deformation in roof and sides wall of tunnel accurately without having any knowledge about rock behavior. Relative strength of effect (R.S.E.) factor which is a mathematical relation in neural networks is presented that shows relative influence of parameter i as input on parameter k as output. With study of R.S.E., it was found that each parameter has a special influence on the deformations around the tunnel and some parameters has small influence in all conditions. So in analysis or back analysis of underground structures more attention should be paid to parameters that have more influence on results. By considering the effect of each parameter in numerical analysis, amount of effort for determination of the parameter and priority in geotechnical exploration can be fined.
Keywords: Relative strength of effect, Tunnel, Artificial intelligence, Artificial neural network, Deformation.

کلیدواژه‌ها [English]

  • Relative strength of effect
  • Tunnel
  • Bock and Lsis
  • Artificial Neural Network
  • deformation
حیدری، مجتبی (1382) پایداری سدهای خاکی همگن با استفاده از شبکه عصبی مصنوعی، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس.

منهاج، محمدباقر (1377) هوش محاسباتی(جلد اول)، مبانی شبکه‌های عصبی مصنوعی، دانشگاه امیرکبیر.

Cai Y.D. (1995) The application of artificial neural-network in determining the blasting classification of rocks, Proc. 2nd Int. Conf. Engineering Blasting Technique, Kunming, P. R. China, Beijing: Peking Univ Press, 24-27.

Deb D., Jiang Y.M., Park D.W., Sanford R.L. (1994) Application of artificial intelligence for improving lonwall mine stability, Proc. 8th Int. Conf. computer methods and advances in geomechanics, morgantown (eds. Siriwardane, H.J. & Zaman, M.M.) Rotterdam: Balkema, 1823-1830.

Demuth H., Beale M. (1996) Neural network toolbox user’s guide, The math work, Inc., Natick, Mass.

Geoffrey D., Toll (1996) Artificial intelligence applications in geotechnical Engineering, EJGE Electronic Journal, http //www.ejge .com /1996/Ppr9608/Auth-DGT.htm.

Hoek E. (2003) Practical rock Engineering-An ongoing set of notes, available on the Rocscience website, www.rocscience.com.

ITASCA Inc. (1996) FLAC2D Ver. 3.3. User’s Manual. Minneapolis, USA.

King R.L., Signer S.P. (1994) Using artificial neural networks for Feature Detection in coal mine roofs, Proc. 8th Int. Conf. computer methods and advances in geomechanics, Morgantown (eds. Siriwardane, H.J. & Zaman, M.M.) Rotterdam: Balkema, 1853-1857.

Millar D., Clarici E. (1994) Investigation of backpropagation artificial aeural networks in modeling the stress-strain behavior of Sandstone rock, Proc. 1994 IEEE International conference on neural networks, PiscatawayNJ: IEEE service center, 3326-3331.

Millar D.L., Calderbank P.A. (1995) On the investigation of a multilayer feedforward neural-network model of rock deformability behavior, Proc. 8th international congress on rock mechanics, Tokyo (eds. Fujii, T.), Rotterdam: Balkema, 933-938.

Millar D.L., Hudson J.A. (1994) Performance monitoring of rock engineering systems using neural networks, transactions of the Institution of mining and metallurgy section, a - mining industry, Vol. 103, pp A3-A16.

Mohamed A., Shahinmark B., Jaksaholger R., (2001) Artificial neural network applications in geotechnical enginnering, Australian geomechanics, Vol.3, 49-62.

Sterling R.L., Lee C.A. (1992) A neural network - expert system hybrid approach for tunnel design, Proc. 33rd United-States Symp. on rock mechanics, Santa Fe (eds. Tillerson, J.R. & Wawersik, W.R.), BrookfieldVT: Balkema, 501-510.

Yang Y., Zhang Q. (1997) A hierarchical analysis for rock engineering using artificial neural networks. Rock mechanics and rock engineering, Vol. 30, No. 4, 207–220.

Yi H., Lindqvist P.A. (1995) The Prediction of rock quality parameters by using neural-network models, Proc. 4th Int. Symp. mine planning and equipment selection, Calgary (eds. Singhal, R.K., Mehrotra, A.K., Hadjigeorgiou, J., Poulin, R.), Rotterdam: Balkema, 933-937.

Zhang Q., Song J.R., Nie X.Y. (1991) Application of neural network models to rock mechanics and rock engineering, Int. journal of rock mechanics and mining sciences & geomechanics abstracts, Vol. 28, No. 6, 535-540.