پیش‌بینی مدول الاستیک سنگ آهک با استفاده از رگرسیون چند متغیره و شبکه عصبی مصنوعی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه زمین شناسی مهندسی دانشگاه اصفهان

2 کارشناس ارشد زمین‌شناسی مهندسی از دانشگاه اصفهان

3 دانشجوی دکتری زمین‌شناسی مهندسی دانشگاه خوارزمی

چکیده

در اغلب پروژه‌های مهندسی مرتبط با سنگ از جمله تونل‌ها، شیب‌ها و پی‌ها، تعیین مدول الاستیک سنگ بکر مهم و اساسی است. تعیین این پارامتر نیازمند تهیه مغزه سالم از سنگ و تجهیزات آزمایشگاهی پیشرفته می‌باشد به طوری که انجام این آزمون را مشکل و هزینه‌بر می‌سازد. بدین لحاظ در سال‌های اخیر محققین مختلف درصدد ارائه روابطی تجربی برای تخمین این پارامتر با تکیه بر خصوصیات فیزیکی و شاخص سنگ‌ها بوده‌اند. در این مقاله سعی شده است با استفاده از مقاومت تک‌محوره، تخلخل و سرعت موج طولی، مدول الاستیک سنگ آهک را پیش‌بینی نمود. بدین منظور از روش رگرسیون چندمتغیره و شبکه عصبی پرسپترون با ساختار 1-4-3 استفاده شده است. پایگاه داده استفاده شده شامل 123 داده است که در مورد شبکه عصبی70% آن‌ها جهت آموزش و 30% جهت آزمایش شبکه استفاده شده است. جهت مقایسه عملکرد مدل‌ها و ارزیابی دقت آن‌ها از ضرایب 2R،  RMSE و VAF استفاده شد. ضریب تعیین (2R) با استفاده از رگرسیون چندمتغیره 738/0 و مقدار آن برای داده‌های آموزش شبکه عصبی 805/0 و برای داده‌های آزمایش 832/0 می‌باشد. این امر بیانگر آن است که روش شبکه عصبی از دقت بالاتری برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Elastic modulus prediction of limestone using multiple variable regression and artificial neural network

نویسندگان [English]

  • Rasoul Ajalloeian 1
  • Hadiseh Mansouri 2
  • Mojtaba Mohammadi 3
1 Professor, Department of Engineering Geology, Isfahan University
2 M.Sc. Student of Engineering Geology, Department of Geology, Isfajan University, Isfahan, Iran.
3 . Ph.D. student of Engineering Geology, Department of Geology, Kharazmi University, Tehran, Iran.
چکیده [English]

It is important to determinate the elastic modulus of intact rock in many engineering projects relating to rock such as tunnels, slopes and foundations. Determination of this parameter need of high quality core samples and sophisticated test equipment because these make performing this test difficult and costly. There for in current years, researches have tried to produce relationships for prediction of this parameter using physical and index characteristics of rocks. So here an attempt has been made to predicate the elastic modulus of limestone by uniaxial compress strength, porosity and longitudinal wave velocity. So we used multiple variable regression method and perceptron artificial   neural network with 3-4-1 architecture. Data base contains 123 samples that 70% and 30% of them has been used for train and test respectively in ANN. The models have been compared using coefficients of R2, RMSE and VAF. The coefficient of determination ( R2) using multiple variable regression was 0.738. it was 0.805 and 0.832 for ANN train data set and ANN test data set respectively. This shows the ANN method have more accuracy than regression.

کلیدواژه‌ها [English]

  • Elastic modulus
  • Limestone
  • Compress strength
  • Artificial Neural Network
  • Multiple regression

قزوینیان ع.، رسولی و.، نورانی ر.، 1386. کاربرد روش‌های آماری چندمتغیره در تخمین مقاومت فشاری تک‌محوره با استفاده از آزمایش‌های غیرمستقیم. سومین کنفرانس مکانیک سنگ ایران، صفحات 199-204.

Karakus, M., Kumral, M., Kilic, O., 2005. Predicting elastic properties of intact rocks from index tests using multiple regression modellin. International Journal of Rock Mechanics and Mining Sciences, 42: 323–330.

Kahraman, S., 2001.  Evaluation of simple methods for assessing the uniaxial compressive strength of rock: International Journal of Rock Mechanics and Mining Sciences, 38: 981–994

Heidari, M., Khanlari, G., Momen A.A., 2010. Prediction of elastic modulus of intact rocks using artificial neural networks and non-linear regression methods. Australian Journal of Basic and Applied Sciences, 4(12): 5869-5879.

Khandelwal, M., Singh, T.N., 2011. Predicting elastic properties of schistose rocks from unconfined strength using intelligent approach. Arabian Journal of Geosciiences, 4: 435–442.

Sarkar, K., Tiwary A., Singh, T.N., 2010. Estimation of strength parameters of rock using artificial neural network. Bulletin of Engineering Geolology and the Environment, 69: 599–606.

Sonmez, H., Gokceoglu, C., Nefeslioglu, H.A.,  and Kayabasi. A., 2006. Estimation of rock modulus: For intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sciences, 43: 224-235.

Y lmaz, I., Yuksek, A., 2008. An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock mechanics and rock engineering, 41(5): 781-795.

Yagiz, S., Sezer, E.A., Gokceoglu, C., 2012. Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. International Journal for Numerical and Analytical Methods in Geomechanics, 36(14): 1636-1650.