بررسی تأثیر ویژگی‌های زمین‌‌‌شناسی مهندسی ژیپس‌های سازند گچساران در گسترش اشکال انحلالی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد گروه زمین شناسی د انشگاه بوعلی سینا همدان

2 دانشجوی کارشناسی ارشد زمین‌شناسی مهندسی دانشگاه بوعلی سینا همدان

3 دانشیار گروه زمین‌شناسی دانشگاه بوعلی سینا همدان

4 دانشجوی دکتری زمین‌شناسی مهندسی دانشگاه فردوسی مشهد و عضو هیات علمی دانشگاه شهید چمران اهواز

چکیده

پدیده کارست در ژیپس‌ها به دلیل قابلیت انحلال زیاد به آسانی توسعه پیدا می‌کند. در این پژوهش با استفاده از مطالعات سنگ‌شناسی و تعیین خصوصیات فیزیکی و مکانیکی نمونه‌های ژیپس سازند گچساران در منطقه رامهرمز، رابطه بین خصوصیات زمین‌شناسی مهندسی ژیپس با چگونگی توسعه اشکال انحلالی بررسی گردیده است. برای تعیین نوع سنگ ژیپس از (Adaptive Neuro-Fuzzy Inference System) ANFIS به عنوان ترکیبی از منطق فازی با شبکه‌های عصبی در قالب روش‌های Neuro-Fuzzy استفاده شد. پارامترهای ورودی این مدل شامل مقاومت تراکمی تک محوره، مقاومت کششی، شاخص دوام سیکل اول و درصد تخلخل 80 نمونه آزمایشگاهی می‌باشند. با استفاده از ANFIS مدلی ساخته شد که با داشتن اطلاعات اندکی از سنگ، قادر به پیش‌بینی نوع سنگ خواهیم بود. با توجه به مطالعات سنگ‌شناسی، ژیپس‌های سازند گچساران در دو نوع آلاباستر (دارای بافت ریزدانه) و پورفیریتیک (دارای بافت درشت‌دانه) تقسیم‌بندی شده‌اند. نتایج نشان داد که بافت سنگ، به‌ویژه شکل و اندازه دانه‌ها، یک پارامتر مهم کنترل‌کننده خصوصیات مکانیکی ژیپس‌های مذکور می‌باشد. با توجه به رده‌بندی مهندسی سنگ بکر، ژیپس آلاباستر در رده سنگ ضعیف با نسبت مدولی زیاد (DH) و ژیپس پورفیریتیک در رده سنگ بسیار ضعیف بانسبت مدولی زیاد (EH) قرار می‌گیرند. ژیپس آلاباستر نسبت به ژیپس پورفیریتیک دارای مقاومت تراکمی، مقاومت کششی و قابلیت انحلال بیشتری بوده و رفتار شکننده‌تری از خود نشان می‌دهد. به همین علت پدیده‌های کارستی همچون فروچاله انحلالی، چاه‌های کارستی،  طاق‌های طبیعی و غار در آنها گسترش بیشتری دارند. ژیپس پورفیریتیک دوام شکفتگی بیشتر و مقاومت کمتری نسبت به ژیپس آلاباستر دارد. به همین دلیل فروچاله‌های فرونشستی و فروریزشی در آنها توسعه زیادتری دارد. هم‌چنین کارن‌ها و برج‌های انحلالی در آنها با ابعاد بزرگتری شکل می‌گیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of engineering geological properties of Gachsaran Formation gypsum on karst development (Khuzestan, Ramhormoz)

نویسندگان [English]

  • Mohammad Hosein Gobadi 1
  • Mohammad Mohamadian 2
  • Hasan Mohseni 3
  • Ramin Karami 4
1 Prof. of engineering geology, Bouali University
2 . M.Sc. student of Engineering Geology, Department of Geology, Bu-Ali Sina University, Hamedan, Iran.
3 Associate Professor , Department of Geology, Bu-Ali Sina University, Hamedan, Iran.
4 Ph.D. student of Engineering Geology, Department of Geology, Ferdowsi Universty, Mashhad, Iran
چکیده [English]

Karstification develops in gypsum easily due to high solubility. In this paper, determine geological engineering properties of Gachsaran Formation gypsum from Ramhormoz area and has been related with karst development by petrological and rock mechanic studies. ANFIS as combines fuzzy logic and neural networks in the form of neuro-fuzzy method were used for detect type of gypsum. Input data include uniaxial compression strength, tensile strength, durability Index and porosity percentage  from 80 laboratory samples. ANFIS was built model that with little knowledge of rock, was able to predict the type of rock. Based on petrographic studies, Gachsaran Formation gypsum with two different textures has been considered, fine grained (alabastrine) and coarse grained (porphyritic) gypsum. The results indicate that texture, especially grain size and shape, is an important parameter controlling the differences  in the mechanical properties of the two gypsum types studied. Based on intact rock engineering classification, alabastrine gypsum and porphyritic gypsum classification as DH and EH category respectively. Alabastrine gypsum than porphyritic gypsum has more unconfined compressive strength, tensile strength, solubility and brittle behavior so karstic phenomena such as dissolution sinkhole , karstic wells(jamas), natural roof and caves are more spread in them.  Porphyritic gypsum than alabastrine gypsum have more slake durability and less strength so collapse and subsidence sinkholes are more spread also karren and pinnacles are bigger in them.

کلیدواژه‌ها [English]

  • Gachsaran formation
  • Alabastrine gypsum
  • Porphyritic gypsum
  • ANFIS
  • Karst development
  • Engineering properties

باغداردخت، ز.، 1384. مطالعه انحلال‌پذیری سازندهای کارستیک در ساختگاه سد تنگ شمیران ایلام. پایان نامه کارشناسی ارشد زمین‌شناسی مهندسی، دانشگاه بو علی سینا همدان.

پرهیزگار، م. ر.، 1386. بررسی مخاطرات زمین‌شناسی در محدوده سد تنگ سرخ شیراز. پایان‌نامه‌ کارشناسی ارشد زمین‌شناسی مهندسی، دانشگاه تربیت مدرس.

ترابی، م.، 1389. مطالعه انحلال‌پذیری ژیپسیت‌های سازند گچساران در محل سد چم‌شیر. پایان‌نامه کارشناسی ارشد زمین‌شناسی مهندسی، دانشگاه بوعلی‌سینا همدان.

 قبادی ،م.ح.،1388. زمین‌شناسی مهندسی کارست. انتشارات دانشگاه بوعلی‌سینا، همدان، چاپ دوم.

کیا، س. م.، 1389. محاسبات نرم در  MATLAB. انتشارات کیان رایانه سبز

محمدیان، م.، قبادی، م. ح.، محسنی، ح.، کرمی، ر. ،1389.مطالعه لیتولوژی سازندگچساران و ارتباط آن با ژئومورفولوژی کارست در منطقه رامهرمز-خوزستان. چهاردهمین همایش انجمن زمین‌شناسی-دانشگاه ارومیه.

محمدیان، م.، قبادی، م. ح.، 1389. فروچاله­های کارستی و عوامل توسعه آنها در منطقه رامهرمز-خوزستان. بیست و نهمین گردهمایی علوم زمین، سازمان زمین‌شناسی و اکتشافات معدنی ایران.

موسوی، س. س.، 1385. مطالعه دوام سنگ‌ها و انحلال‌پذیری ژیپس به منظور آب‌بندی محل سد خیرآباد در شرق بهبهان. پایان‌نامه کارشناسی‌ارشد زمین‌شناسی مهندسی، دانشگاه بوعلی‌سینا همدان.

Anonymous, 1979. Classification of rocks and soils for engineering geological mapping, part 1 rock and soil  materials. Bulletin of International Association of Engineering Geology and the Environment, 19:355–371.

Bernardas, P., Anthony H., Jurga A., 1999. Planning for gypsum geohazards in Lithuania and England. Engineering Geology, 52: 93–103.

Brown, E.T. 1981. Rock characterization, testing and monitoring (ISRM suggested methods). Pergamon, London.

Cooper, A.H., 2008. Identification, prediction, and mitigation of sinkhole hazards in evaporate  karst        areas. Environmental Geology, 53:1007-1022.

Deere, D.U., Miller, R.P., 1966. Engineering classification and index properties for intact rock. Technical Report No. AFWL-TR-65-116, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, pp 308.

Deer, W.A., Howıe, R.A., Zussman, J., 1962. Rock forming minerals, vol 5, Non-silicates. Longman, London.

Derek, F., Paul, W., 2007. Karst Hydrogeology and Geomorphology, wiley Publications.

Franklin, J.A., Chandra, A. 1972. The slake durability test. Internationl Journal of Rock Mechanics and Mining Sciences, 9:325–341.

Francisco, G., Johnson, K., Anthony H., 2008. Evaporite Karst processes, landforms, and environmental problems. Environmental Geology, 53: 935-936.

Goodman, R.E., 1982. Introduction to rock mechanics. Wiley, New York, 478p.

Kenneth, S.J., 2008. Gypsum-karst problems in constructing dams in USA. Environmental Geology,53:945-950.

Klimchouk, A.B., Aksem, S.D., 2005. Hydrochemistry and solution rates in gypsum karst: case study from the western Ukraine, Environmental Geology, 48: 307-319.

Mateo, G., Francisco, G., 1998. Geomorphology of the Tertiary gypsum formation in the Ebro Depression )Spain), Geodema, 87: 1-29.

Romenov, D.K., Gabrovsek, F. Debrodt, W., 2003. Dam site in soluble rocks: a model of     increasing leakage by dissolutional widening of fractures beneath a dam. Engineering Geology, 70: 17-35.

Tony, W., Fred, B., Martin, C., 2005. Sinkholes and Subsidence, springer publications.

Waele, J., Plan, L., Audra, P.H., 2009. Recent developments in surface and subsurface karst geomorphology: An introduction. Geomorphology, 106:1-8.     

Yilmaz, I., Karakan., E., 2005. Slaking durability and its effect on the doline  formation in the gypsum, Environ Geol 47: 1010–1016.