بررسی تاثیر گلیسرول بر مقاومت فشاری خاک و خاک سیمان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سازه­های آبی، دانشگاه تهران

2 دانشیار گروه آبیاری و آبادانی، دانشگاه تهران

چکیده

گلیسرول از آلوده کننده­های آلی محیط زیست است که منشا آن ترکیبات هیدروکربنی می­باشد. در این پژوهش اثر افزودن درصدهای وزنی مختلف گلیسرول بر مقاومت خاک و خاک سیمان مورد بررسی قرار گرفت. نمونه­هایی از یک خاک رسی، خاک سیمان تهیه شده از خاک طبیعی (حاوی 3 و 6 درصد سیمان)، خاک حاوی درصدهای گوناگون گلیسرول (3، 6 و 9 درصد) و همچنین خاک سیمان (حاوی 3 و6 درصد سیمان) که به درصدهای وزنی مختلف گلیسرول (3، 6 و 9 درصد) آغشته شده بودند به روش استاتیکی تهیه و آزمایش­های مقاومت فشاری تک محوری بر روی آن­ها انجام گردید. این آزمایش بر روی نمونه‏های دارای سیمان در زمان­های عمل‏آوری 3، 7، 14 و 28 روزه انجام شد. نتایج نشان داد که افزودن گلیسرول به خاک موجب کاهش مقاومت و افزایش شکل‏پذیری خاک می­شود که این کاهش با افزایش درصد گلیسرول همراه است. همچنین افزودن این ماده باعث افزایش مقاومت خاک سیمان در درصدهای پایین گلیسرول (3درصد) می­شود، در صورتی که در درصدهای بالاتر(6 و 9 درصد) باعث کاهش مقاومت از میزان مقاومت خاک سیمان متناظر می­گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of glycerol on compressional strength of soil and soil – cement mixture

نویسندگان [English]

  • Mahdi Khatibi 1
  • Ali Reissi Estabragh 2
1 MSc Student of Hydro Structures Engineerig, Tehran University, mehdi.khatibi@ut.ac.ir
2 Associate Prof. of Irrigation and Reclamation Engineering, Tehran University
چکیده [English]

Glycerol is a hydrocarbon compound and is considered an environmental organic pollutant. This paper presents the effect of different percentages of glycerol on the strength of soil and soil-cement mixtures. Compressive strength experiments were conducted on natural soil and soil-cement (with %3 and %6 cement) samples contaminated with different percentages (%3, %6 and %9) of glycerol. Results indicated that compressive strength of soil samples prepared with different percentages of glycerol decrease compare to natural soil while increasing compressive strength of soil-cement mixtures at low percentages (%3) of glycerol. Furthermore using higher percentages of glycerol (%6 and %9) caused decrease in the compressive strength for soil-cement mixtures

کلیدواژه‌ها [English]

  • Soil-cement
  • Glycerol
  • Compressive strength
  • curing time

محرم ‌زاده سرای، خ.، محمدی، د.، نیکودل، م.، غبرایی، ر،. 1391. بررسی خصوصیات ژئوتکنیکی خاکهای سطحی آلوده پالایشگاه تبریز، سی و یکمین همایش علوم زمین، تهران، سازمان زمین شناسی و اکتشافات معدنی کشور.

محمدی اکبرآبادی، م.، یثربی، ش.، خوش نشین لنگرودی، م.، 1389. بررسی تاثیر آلودگی نفت خام بر برخی از ویژگی‌های ژئوتکنیکی خاک ماسه‌ای، پنجمین کنگره ملی مهندسی عمران، مشهد، دانشگاه فردوسی مشهد.

Al-Sanad, H.A., Eid, W.K., Ismael, N.F., 1995. Geotechnical properties of oil-contaminated Kuwaiti sand. Journal of geotechnical engineering, 121(5): 407-412.

ASTM International and American Society for Testing and Materials, 2004. Annual book of ASTM standards. American Society for Testing and Materials.

Botta, D., Dotelli, G., Biancardi, R., Pelosato, R., Natali Sora, I., 2004. Cement–clay pastes for stabilization/solidification of 2-chloroaniline. Waste Management, 24(2): 207-216.

Estabragh, A., Beytolahpour, I., Javadi, A., 2010. Effect of resin on the strength of soil-cement mixture. Journal of Materials in Civil Engineering, 23(7): 969-976.

Evans, J.C., Kugelman, I.J., Fang, H.Y., 1985. Organic fluids effects on the strength, deformation and permeability of soil-bentonite slurry walls.

Evgin, E., Das, B.M., 1992. Mechanical behavior of an oil contaminated sand. Environmental Geotechnology, Usmen & Acar (eds), Balkema, Rotterdam.

Fang, H.Y., Daniels, J., 1997. Introduction to environmental geotechnology. CRC Press.

Jaynes, W.F., Vance, G.F., 1999. Sorption of benzene, toluene, ethylbenzene, and xylene (BTEX) compounds by hectorite clays exchanged with aromatic organic cations. Clays and Clay Minerals, 47(3): 358-365.

Khamehchiyan, M., Charkhabi, A., Tajik, M., 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology, 89(3): 220-229.

Ladd, C.C., Martin, R.T., 1967. The effects of pore fluid on the undrained strength of kaolinite. Contract Report S-69, 5.

Moore, C.A., Mitchell, J.K., 1974. Electromagnetic forces and soil strength. Geotechnique, 24(4): 627-640.

Pichtel, J., 2007. Fundamentals of Site Remediation: For Metal and Hydrocarbon-contaminated Soils. Government Institutes.

Ratnaweera, P., Meegoda, J.N., 2006. Shear strength and stress-strain behavior of contaminated soils. ASTM geotechnical testing journal, 29(2): 133-140.

Sheng, G., Xu, S., Boyd, S.A., 1996. Mechanism (s) controlling sorption of neutral organic contaminants by surfactant-derived and natural organic matter. Environmental science & technology, 30(5): 1553-1557.

Singh, S.K., Srivastava, R.K., John, S., 2008. Settlement characteristics of clayey soils contaminated with petroleum hydrocarbons. Soil & sediment contamination, 17(3): 290-300.

Sridharan, A., Venkatappa Rao, G., 1973. Mechanisms controlling volume change of saturated clays and the role of the effective stress concept. Geotechnique, 23(3): 359-382.