بررسی تاثیرات الیاف کربن و شیشه بر افزایش مقاومت خمشی سنگ های مصنوعی و مطالعه ی ساختار آن ها با استفاده از SEM

نوع مقاله: مقاله پژوهشی

نویسندگان

1 زمین شناسی مهندسی، دانشکده علوم پایه، دانشگاه تربیت مدرس، تهران، ایران

2 استاد گروه زمین شناسی دانشگاه اربیت مدرس

3 استاد زمین شناسی مهندسی دانشکده علوم پایه دانشگاه تربیت مدرس، تهران، ایران

چکیده

سنگ مصنوعی ترکیبی از سنگ دانه های طبیعی و مواد افزودنی مانند صمغ های صنعتی (رزین)، سیمان و دیگر مواد پلیمری می باشد. در این پژوهش سنگ مصنوعی با مواد افزودنی و رزین های متفاوت به منظور دست یابی به ظرفیت خمشی بالا با طرح اختلاط، 84 % سنگ دانه، 10 % رزین و 6 % مواد افزودنی به روش کاملا دستی بدون نیاز به سیستم خلاء و فشار ساخته شد. برای تعیین ریز ترک ها، عناصر، اتم های سازنده، درصد وزنی و چگونگی قرارگیری و در هم تنیدگی مواد افزودنی مصرف شده در ساخت سنگ های مصنوعی، تصاویر FESEM از نمونه ها گرفته شد. برای تعیین شکل پذیری و ارزیابی کیفیت سنگ های مصنوعی توسط توانایی آن ها در برابر مقاومت به ایجاد ترک یا ناهمواری های سطحی دیگر در طول یک دوره ی خمشی مداوم، سنگ های مصنوعی ساخته شده با مواد افزودنی (الیاف شیشه، الیاف کربن، رزین پلی استر و وینیل استر) آزمایش خمش سه نقطه ای صورت گرفت. بر اساس آزمایش خمش سه نقطه ای نمونه ساخته شده با رزین ویلین استر و الیاف کربن بیش ترین مقاومت خمشی و نمونه ساخته شده با رزین ویلین استر و الیاف شیشه بیش ترین کرنش را در طول خمش تحمل کردند. همچنین نوع شکست و ترک ها در سنگ های تقویت شده به ترتیب، شکننده و خمشی و در سنگ های بدون تقویت، شکل پذیر و خمشی برشی است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the effects of carbon and glass fiber on increasing the Bending strength of artificial Stone and studying their structure using SEM

نویسندگان [English]

  • Akbar Jafarazari Khazineh 1
  • Ali Uromeihy 2
  • Mohammad Reza Nikudel 3
1 Engineering Geology, Faculty of Basic Sciences, Tarbiat Modarres University, Tehran, Iran
2 P{rof. of Engineering geology Tarbiat Modares University
3 Professor of Engineering Geology, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Artificial stone is a mixture of natural aggregate and additives such as industrial gums (resin), cement and other polymer materials. In this research artificial stones with different additives and resins were designed to achieve high flexural capacity with mixing design, 84% aggregate, 10% resin and 6% additive completely manually without vacuum and pressure system. FESEM images were taken from specimens to determine fine cracks, elements, manufacturing atoms, weight percentages, and how to add and interconnect the additives used in making artificial rocks. To determine the ductility and evaluation of the quality of artificial rocks by their ability to withstand cracks or other surface roughness over a continuous bending period, artificial rocks made with additives (glass fiber, carbon fiber, polyester resin And vinyl ester) Three-point bending test Based on the three-point bending test, the sample made from wilin ester resin and the carbon fiber, had the most flexural strength and a sample made from wilin ester resin and the glass fiber tolerated the most strain during bending. Also, the type of fracture and cracks in the reinforced rocks are brittle and flexural respectively, and are ductile and shear-bending in rocks without reinforcing.

کلیدواژه‌ها [English]

  • artificial stone
  • glass fiber and carbon
  • polyester resin and ester resin
  • Three-point bending test
  • SEM

باباآدم، ن.، 1394، تاثیر خصوصیات زمین شناسی مهندسی سنگ دانه های سیلیسی بر ویژگی های مهندسی سنگ مصنوعی، پایان نامه کارشناسی ارشد زمین شناسی مهندسی، دانشگاه تربیت مدرس.

زیدآبادی نژاد، م.،1394، بررسی تراکم بافت بر استحکام کامپوزیت تهیه شده از پارچه الیاف شیشه تقویت شده با رزین اپوکسی، کنفرانس بین المللی علوم و مهندسی 10 آذر، دبی- امارات

سازمان مدیریت و برنامه­ریزی کشور (1385) . راهنمـای طراحی و ضـوابط اجرایـی بهـسازی سـاختمان­های بتنـی موجود با استفاده از مصالح تقویتی FRP ، نشریه شـماره 345.

شاهدی فر، و.، حاجی حسینی، م.، امیری، ا ؛1389. خواص و عملکرد کامپوزیت بر پایه رزین اپوکسی، پژوهشگاه پلیمر و پتروشیمی ایران، گروه کامپوزیت، تهران دانشگاه صنعتی مالک اشتر، مجله علوم و تکنویوژی پلیمر، شماره 3، صفحه 211-203، سال بیست و سوم

غلامی، ع ؛ اعلایی، ح ؛1391. تأثیر الیاف کامپوزیتی کربن در افزایش ظرفیت خمشی تیرهای بتن مسلح با بتن ضعیف، پژوهشنامه زلزله­ شناسی و مهندسی زلزله، سال پانزدهم، شماره اول

Carvalho, E. A. S., Vilela, N. D. F., Monteiro, S. N., Vieira, C. M. F., & Silva, L. C. D. (2018). Novel  Artificial Ornamental Stone Developed with Quarry Waste in Epoxy Composite. Materials Research, 21.

Cruz, Juan. (2010 ).  Process for manufacturing outdoor artificial stone boards with methacrylate resin by means of the vibro-compression under vacuum system. U.S. Patent Application 11/886,897, filed March 11.

Gomes, M. L. P., Carvalho, E. A., Sobrinho, L. N., Monteiro, S. N., Rodriguez, R. J., & Vieira, C. M. F. (2018). Production and characterization of a novel artificial stone using brick residue and quarry dust in epoxy matrix. Journal of materials research and technology.

Gong, W., & Li, C. (2010). Multi-scale and anisotropic characterization of coal structure based on SEM image analysis. Chinese Journal of Rock Mechanics and Engineering, 29(S1), 2681-2689.

Kandelbauer, A., Tondi, G., Zaske, O. C., & Goodman, S. H. (2014). Unsaturated polyesters and vinyl esters. In Handbook of Thermoset Plastics (Third Edition) (pp. 111-172).

Liu Hui. (2006).  Preliminary Study on the Characteristic of Rock Microscopic Damage Based on the Technique of CT Image Processing under the Frost and Thaw Condition. Master Dissertation. Xi’an: Xi' an Electronic Science and Technology University Press, 3-10.

Peng, L., & Qin, S. (2018). Mechanical behaviour and microstructure of an artificial stone slab prepared using a SiO 2 waste crucible and quartz sand. Construction and Building Materials, 171, 273-280.

Passchier, C. W., & Trouw, R. A. J. (2005). Microtectonics, 366 pp.

Quantum-Quartz,(2013).  www.wk.au/quantumquartz_technical_info_pdf,

Sakai,M. and Kenichiro, S. (2001) ARTIFICIAL STONE.Patent No US 6,309,562B1.

Stfanidou, M., Pachta, V., & Papayianni, I. (2015). Design and testing of artificial stone for the restoration of stone elements in monuments and historic buildings. Construction and Building Materials, 93, 957-965.

Zanjani, J. S. M., Al-Nadhari, A. S., & Yildiz, M. (2018). Manufacturing of electroactive morphing carbon fiber/glass fiber/epoxy composite: Process and structural monitoring by FBG sensors. Thin-Walled Structures, 130, 458-466.

Zhu, J., Imam, A., Crane, R., Lozano, K., Khabashesku, V. N., & Barrera, E. V. (2007). Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength. Composites Science and Technology, 67(7-8), 1509-1517.