تاثیر تعداد سیکل های یخبندان-ذوب روی خواص فیزیکی و مکانیکی ماسه سنگ لوشان و ملات سیمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بین المللی امام خمینی (ره)

2 دانشگاه بین المللی امام خمین (ره)

چکیده

فرایند یخبندان-ذوب از جمله این عوامل است که به صورت گسترده خواص سنگ‌ها و بتن را تحت تاثیر قرار می‌دهد. بنابراین در مناطقی که احتمال رخ دادن این فرایند است ضروری می‌باشد تاثیر این فرایند بر روی ویژگی‌های فیزیکی و مکانیکی مصالح در نظر گرفته شود. در بیشتر پژوهش های انجام شده دمای دوره ی یخبندان و دوره ی ذوب و مدت زمان آن بدون توجه به وضعیت آب و هوایی مناطقی که احتمال رخ دادن فرایند یخبندان-ذوب است انتخاب شده است و همچنین در مورد مصالح بر پایه سیمان تمرکز پژوهش ها بر روی بتن بوده و پژوهش های اندکی در رابطه با تاثیر یخبندان-ذوب روی ملات سیمان انجام شده است. در این پژوهش تاثیر تعداد سیکل های یخبندان-ذوب روی تخلخل، مقاومت تراکمی تک محوره و مقاومت کششی برزیلی نمونه ماسه سنگ و ملات سیمان با توجه به داده های هواشناسی مناطق غرب و شمالغرب ایران که احتمال رخ دادن فرایند یخبندان- ذوب در این مناطق می باشد بررسی شده است.همچنین برای بررسی تخریب در اثر یخبندان-ذوب عکس برداری سی تی اسکن از نمونه ماسه سنگ به عمل آمده است نتایج نشان داده است با افزایش تعداد سیکل های یخبندا-ذوب مقدار درصد تخلخل نمونه ها به صورت خطی افزایش در حالی که مقاومت تک محوره و مقاومت کششی آن ها کاهش پیدا کرده است همچنین بررسی عکس های سی تی اسکن نشان می دهد فاکتور آسیب در نمونه ماسه سنگ با افزایش سیکل افزایش پیدا کرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of number of freeze-thaw cycles on physical and mechanical properties of Lushan sandstone and cement mortar

نویسندگان [English]

  • Koorosh Abdolghanizadeh 1
  • Mehdi Hosseini 2
  • Morteza saghafiyazdi 1
1 Imam Khomeini international university
2 Imam Khomeini International University
چکیده [English]

Freeze-thaw process is one of these factors which extensively affects rocks and concrete properties. Thus, taking its impact on physical and mechanical properties of materials into account is required in the regions susceptible to the process. In most of the previous studies, the freezing and thawing periods' temperatures and their duration were chosen regardless of the weather conditions of the regions susceptible to the freeze-thaw process and regarding cement-based materials, the investigations were focused on concrete and there are a few studies on freeze-thaw effect on cement mortar. This study addressed the effect of number of freeze-thaw cycles on porosity, uniaxial compressive strength and Brazilian tensile strength of sandstone and cement mortar specimens considering the climatic data of western and northwestern regions of Iran in which the occurrence of freeze-thaw process is possible. Furthermore, the computerized scan (CT) was carried out on the sandstone specimen to examine the damage resulting from freeze-thaw. The results indicated that the increase in the number of freeze-thaw cycles caused in linear increase in the porosity of the specimens, while reducing their uniaxial and tensile strength. The study of the CT images also showed that the damage factor was increased by increasing the number of cycles.

کلیدواژه‌ها [English]

  • physical and mechanical properties
  • Freeze-thaw cycle
  • sandstone
  • cement mortar
امیری، م.، مومیوند، ح.، 1397. ساخت ماسه سنگ مصنوعی با حوزه وسیعی از تخلخل، مجله ژئومکانیک نفت، دوره 2، شماره 1، صفحه 85-99.
Altindag, R., Alyildiz, I.S. and Onargan, T., 2004. Mechanical property degradation of ignimbrite subjected to recurrent freeze-thaw cycles. International journal of rock mechanics and mining sciences6(41), pp.1023-1028.
Altindag, R., Mutlutürk, M. and Karaguzel, R., 2003, September. The effects of freezing–thawing cycles on the use ability of Isparta andesite as a building stone. In Proceedings of International Symposium on Industrial Minerals and Building Stones (p. 289).
Binal, A., Kasapoğlu, K.E. and Gökçeoğlu, C., 1997. The Surficial Physical Deterioration Behaviour of Neogene Volcanosedimentary Rocks of Eskişehir-Yazılıkaya NW Turkey. Engineering Geology and The Environment, Yunanistan, pp.3065-3069.
Cao, J. and Chung, D.D.L., 2002. Damage evolution during freeze–thaw cycling of cement mortar, studied by electrical resistivity measurement. Cement and concrete research32(10), pp.1657-1661.
Dunn, J.R. and Hudec, P.P., 1966. Water, clay and rock soundness.
Everett, D.H., 1965. Complementary Information to Capillary Properties of Some Model Pore Systems with Special Reference to Frost Damage. Rilem Bulletin, (27).
Feng, X.T., Chen, S. and Zhou, H., 2004. Real-time computerized tomography (CT) experiments on sandstone damage evolution during triaxial compression with chemical corrosion. International Journal of Rock Mechanics and Mining Sciences41(2), pp.181-192.
Freire-Lista, D.M., Fort, R. and Varas-Muriel, M.J., 2015. Freeze–thaw fracturing in building granites. Cold Regions Science and Technology113, pp.40-51.
Fujii, M. and Uyama, K., 2004, October. Recent advances on X-ray CT. In Xray CT for Geomaterials: Soils, Concrete, Rocks International Workshop on Xray CT for Geomaterials, Kumamoto, Japan (p. 3). CRC Press.
Hatheway, A.W., 2009. The complete ISRM suggested methods for rock characterization, testing and monitoring; 1974–2006.
Jacobsen, S., Gran, H.C., Sellevold, E.J. and Bakke, J.A., 1995. High strength concrete—Freeze/thaw testing and cracking. Cement and concrete research25(8), pp.1775-1780.
Jamshidi, A., Nikudel, M.R. and Khamehchiyan, M., 2013. Predicting the long-term durability of building stones against freeze–thaw using a decay function model. Cold Regions Science and Technology92, pp.29-36.
Khanlari, G., Sahamieh, R.Z. and Abdilor, Y., 2015. The effect of freeze–thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran. Arabian Journal of Geosciences8(8), pp.5991-6001.
Latham, J.P., Van Meulen, J. and Dupray, S., 2006. Prediction of fragmentation and yield curves with reference to armourstone production. Engineering geology87(1-2), pp.60-74.
Li, J., Kaunda, R.B. and Zhou, K., 2018. Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone. Cold Regions Science and Technology154, pp.133-141.
Li, J.L., Zhou, K.P., Liu, W.J. and Deng, H.W., 2016. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze–thaw cycles. Transactions of Nonferrous Metals Society of China26(11), pp.2997-3003.
Momeni, A., Abdilor, Y., Khanlari, G.R., Heidari, M. and Sepahi, A.A., 2016. The effect of freeze–thaw cycles on physical and mechanical properties of granitoid hard rocks. Bulletin of Engineering Geology and the Environment75(4), pp.1649-1656.
Mutlutürk, M., Altindag, R. and Türk, G., 2004. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing–thawing and heating–cooling. International journal of rock mechanics and mining sciences41(2), pp.237-244.
Nakamura, M., Togaya, T. and Okuda, S., 1977. Effect of Dimensional Distribution of Pores in porous ceramics on frost resistance under one dimensional cooling. J. Ceram. Soc. Japan85(987), p.549.
Nasseri, M.H.B., Schubnel, A. and Young, R.P., 2007. Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite. International Journal of Rock Mechanics and Mining Sciences44(4), pp.601-616.
Noor-E-Khuda, S., Albermani, F. and Veidt, M., 2017. Flexural strength of weathered granites: Influence of freeze and thaw cycles. Construction and Building Materials156, pp.891-901.
Otani, J. and Obara, Y. eds., 2004. Xray CT for Geomaterials: Soils, Concrete, Rocks International Workshop on Xray CT for Geomaterials, Kumamoto, Japan. CRC Press.
Prick, A., 1995. Dilatometrical ehavior of porous calcareous rock samples subjected to freeze-thaw cycles. Catena25(1-4), pp.7-20.
Raynaud, S., Fabre, D., Mazerolle, F., Geraud, Y. and Latière, H.J., 1989. Analysis of the internal structure of rocks and characterization of mechanical deformation by a non-destructive method: X-ray tomodensitometry. Tectonophysics159(1-2), pp.149-159.
Reis, J.M.L. and Ferreira, A.J.M., 2006. Freeze–thaw and thermal degradation influence on the fracture properties of carbon and glass fiber reinforced polymer concrete. Construction and building materials20(10), pp.888-892.
Saito, M., Ohta, M. and Ishimori, H., 1994. Chloride permeability of concrete subjected to freeze-thaw damage. Cement and Concrete Composites16(4), pp.233-239.
Shang, H.S. and Song, Y.P., 2006. Experimental study of strength and deformation of plain concrete under biaxial compression after freezing and thawing cycles. Cement and Concrete Research36(10), pp.1857-1864.
Siline, M., Ghorbel, E. and Bibi, M., 2017. Effect of freeze–Thaw cycles on the physicomechanical properties of a pozzolanic mortar. Construction and Building Materials134, pp.32-38.
Sun, W., Zhang, Y.M., Yan, H.D. and Mu, R., 1999. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles. Cement and Concrete Research29(9), pp.1519-1523.
Topal, T. and Sözmen, B., 2003. Deterioration mechanisms of tuffs in Midas monument. Engineering Geology68(3-4), pp.201-223.
Yu, J., Chen, X., Li, H., Zhou, J.W. and Cai, Y.Y., 2015. Effect of freeze-thaw cycles on mechanical properties and permeability of red sandstone under triaxial compression. Journal of Mountain Science12(1), pp.218-231.
Zappia, G., Sabbioni, C., Riontino, C., Gobbi, G. and Favoni, O., 1998. Exposure tests of building materials in urban atmosphere. Science of the total environment224(1-3), pp.235-244.