ارزیابی مقاومت تراکم تک محوری و حدود اتربرگ خاک رس ماسه ‌دار تثبیت شده با متاکائولن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 زمین شناسی مهندسی دانشگاه تهران

2 کارشناس ارشد ژئوتکنیک

چکیده

اصلاح و بهسازی خاکهای ضعیف به عنوان امری اجتناب ناپذیر نقش مهمی در پروژههای عمرانی دارد. در پژوهش حاضر تاثیر افزودن متاکائولن بر حدود اتربرگ و مقاومت فشاری تکمحوری خاک رس‌ماسه‌دار بررسی شده است. به این منظور، آزمایشهای مقاومت تراکم تک محوری روی نمونههای خاک ‌رسماسه‌دارتثبیت نشده و تثبیت شده با 5، 10، 15، 20 و 25 درصد متاکائولن در زمان‌های عمل‌آوری آنی، 7، 14و 28 روز و هچنین آزمایش حدود اتربرگ در درصدهای 5، 15 و 25 در زمان عملآوری آنی انجام شده است. نتایج نشان می‌دهد افزایش درصد متاکائولن موجب افزایش حدود روانی و خمیری خاک رس ماسهدار میشود. بطوری‌که میزان افزایش حدخمیری خاک کمتر از حدروانی بوده و در نتیجه نشانه خمیری خاک افزایش یافته است. نمونه‌های تثبیت شده با 25 درصد متاکائولن با افزایش33/1 و 4/1 برابری به ترتیب برای حدود روانی و خمیری بیشترین تغییر را در حدود اتربرگ خاک رس ماسه‌دار باعث شده اند. بررسی خاک تثبیت شده در نمودار خمیری خاک نشان می‌دهد که موقعیت خاک در این نمودار در اثر افزایش میزان متاکائولن تغییر ناچیزی کرده و خاک در همان ساختار اولیه باقی خواهد ماند. همچنین با افزایش درصد متاکائولن و زمان عمل‌آوری مقاومت فشاری تک‌محوری رس ماسه‌دار افزایش می‌یابد. بیشترین میزان افزایش مقاومت به ازای 25 درصد متاکائولن و در زمان 28 روز اتفاق افتاده است. همچنین بررسی سطوح گسیختگی و نحوه شکست نمونههای آزمایش شده نشان میدهد که با افزایش متاکائولن شکست نمونهها پس از رسیدن به مقاومت نهایی سریع‌تر صورت می گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the uniaxial compression strength and Atterberg limits of metakaolin-treated sandy clay soil

نویسندگان [English]

  • Ali M. Rajabi 1
  • Zahra Hamrahi 2
1 Engineering Geology, university of Tehran
2 Master of Science
چکیده [English]

Improvement of poor soils as an inevitable issue plays an important role in civil engineering projects. In this paper, the effect of adding metakaolin on Atterberg limits and uniaxial compressive strength of sandy clay soil was investigated. For this purpose, uniaxial compressive strength tests have been done on non-stabilized and stabilized soil samples with 5, 10, 15, 20 and 25% of metakaolin at curing times including immediately after mixing, as well as 7, 14 and 28 days. The Atterberg limits test have been also conducted on stabilized soil samples with 5, 15 and 25 at immediately after mixing. The results show that increasing the percentage of metakaolin increases the liquid and plasticity limits of sandy clay. So that the amount of plasticity limit of soil is less than the liquidity and thus the soil plasticity index increase. Stabilized samples with 25% metakaolin increased by 1.33 and 1.40 times, respectively, for liquid and plasticity limits, due to the highest change in the Atterberg limits of sandy clay soil. The study of stabilized soil in plasticity chart shows that by adding of metakaolin, the soil's position in this chart is negligible. Also, increasing the percentage of metakaolin and the curing time increases uniaxial compressive strength of the sandy clay. The highest strength rate for 25% of metakaolin occurred at 28 days. Also, studying the failure planes and the failure rate of the tested specimens shows that with increasing metakaolin, the failure of the specimens occurs faster after reaching the final strength.

کلیدواژه‌ها [English]

  • Atterberg limits
  • Uniaxial Compression Strength
  • sandy clay
  • Metakaolin
  • Improvement
استاندارد ملی ایران شماره 3433.، 1373. ویژگی‌های پوزولان‌های طبیعی، چاپ یکم.
بخشی اردکانی، ش. و رجبی، ع.، 1396. بررسی آزمایشگاهی تاثیر افزودنی‌های زئولیت و سپیولیت بر پارامترهای مقاومتی خاک‌های ماسه‌رس‌دار، پایان‌نامه کارشناسی ارشد، دانشکده فنی و مهندسی، دانشگاه قم.
یثربی، ش. و جداری صالح زاده، ن.، 1380. بررسی تاثیر پوزولان بر روی ویژگی‌های فیزیکی و مکانیکی رس واگرا.، پایان‌نامه کارشناسی ارشد، دانشگاه تربیت مدرس، دانشکده مهندسی عمران.
یثربی، ش. و  قابزلو، س.، 1380. بهبود خصوصیات مکانیکی خاک مارن با استفاده از پوزولان.، پایان‌نامه کارشناسی ارشد, دانشگاه تربیت مدرس, دانشکده مهندسی عمران.
Al-Swaidani, A., Hammoud, I., Meziab, A., 2016. Effect of adding natural pozzolana on geotechnical properties of lime-stabilized clayey soil, Journal of Rock Mechanics and Geotechnical Engineering, 8 (5): 714-725.
Ashori, P., and Madandost, R., 2012. Evaluation of engineering properties of High Performance Concrete (HPC) incorporating Metakaolin and Zeolite, Master's thesis of Guilan University.
Avet, F., Li, X., and Scrivener, K., 2018. Determination of the amount of reacted metakaolin in calcined clay blends. Cement and Concrete Research, 106: 40-48.
Batis, G., Pantazopoulou, P., Tsivilis, S.,Badogiannis, E., 2005. The effect of metakaolin on the corrosion behavior of cement mortars,Cement and Concrete Composites, 27(1): 125-130.
Clovis, N., Vanderley, M.J, Cleber, M. R., Holmer, S., Mario, S., 2004. Effect of Metakaolin on the performance of PVA and cellulose fibers reinforced cement.
Courard, L., Darimont, A., Schouterden, M., Ferauche F., Willem, X.,Degeimbre, R., 2003. Durability of mortars modified with metakaolin, Cement and Concrete Research, 33(9): 1473-1479.
Deng, Y., Yue, X., Liu, S., Chen, Y., Zhang, D., 2015. Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution, Engineering Geology, 193: 146-152.
El-Eswed, B.I., Aldagag, O.M., Khalili, F.I., 2017. Efficiency and mechanism of stabilization/solidification of Pb(II), Cd(II), Cu(II), Th(IV) and U(VI) in metakaolin based geopolymers, Applied Clay Science, 140: 148-156.
Ghrici, M.S., Kenai, M., 2007. Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements, Cem, Concr Compos: 542–549.
Hossain, K.M.A., and Mol, L., 2011. Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes, Construction and Building Materials, 25: 3495-3501.
Khamehchiyan, M., Charkhabi, A., Tajik M., 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils. Engineering Geology, 89: 220-229.
Kolovos, K.G., Asteris, P.G., Cotsovos, D.M., Badogiannis, E., Tsivilis, S., 2013. Mechanical properties of soil Crete mixtures modified with metakaolin, Construction and Building Materials, 47: 1026-1036.
Matoes, M., 1964. Soil Lime Research at Iowa State University, Soil and Foundations, 90(SM-2): 127-153.
Qian, X., and Li, Z., 2001. The relationships between stress and strain for high-performance concrete with metakaolin, Cement and Concrete Research, 31(11): 1607-1611.
Sudagar, A., Andrejkovicova, S., Patinha, C., Velosa, A., McAdam, A., da, E., Rocha, F., 2018. A novel study on the influence of cork waste residue on metakaolin-zeolite based geopolymers, Applied Clay Science, 152: 196-210.
Sivapullaiah, P.V., and Prashansth, J.P., 1996. Effect of fly ash of the index properties of black cotton soil, soils and foundations, 36: 97-103.
Wang, L., Li, X., Cheng, Y., Bai, X., 2018. Effects of coal-metakaolin on the properties of cemented sandy soil and its mechanisms. Construction and Building Materials, 166: 592-600.
Wianglor, K., Sinthupinyo, S., Piyaworapaiboon, M., Chaipanich, A., 2017. Effect of alkali-activated metakaolin cement on compressive strength of mortars, Applied Clay Science, 141: 272-279.
Wild, S., Khatib, J. M., Jones, A., 1996. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete, Cement and Concrete Research, 26(10): 1537-1544.
Wu, Z., Deng, Y., Liu, S., Liu, Q., Chen, Y., Zha, F., 2016. Strength and micro-structure evolution of compacted soils modified by admixtures of cement and metakaolin, Applied Clay Science, 127: 51-44.
www.silicasand-co.com
Zhang. T., Yue, X., Deng, Y., Zhang, D., Liu, S., 2014. Mechanical behavior and micro-structure of cement-stabilized marine clay with a metakaolin agent, Construction and Building Materials, 73: 51-57.