Case Study on the effects of physical parameters in electrical resistivity of fine grain soil

Document Type : Original Article

Authors

1 School of Geology, College of Sciences, University of Tehran

2 Associate Prof./University of Tabriz

3 Graduated, School of Geology, College of Science University of Tehran

Abstract

Soil electrical resistivity is an easy indicator of soil corrosion potential assessment. In order to investigate the soil corrosion in an industrial zone on the margin of the Meyghan salt lake (Kheyr-Abad industrial town), the electrical resistivity was measured by Miller box in laboratory considering different conditions in terms of moisture content. Soils in the region are generally fine-grained and typically are from clay type (CL/CH) according to USCS. In the minimum considered moisture content for the test, which correspond to the dry season, the soils of the study area have the moderate to the severe corrosive potential that increases to the Meyghan lake side. The corrosion potential pattern in superficial soils (0 to 5 m) follows northeastern to southwest waterway channels and is more homogeneous in the deeper parts (5 to 10 m). With increasing moisture content, the electrical resistivity is strongly reduced and in the moisture content of 25%, the corrosion potential of the soils of the study area increases to severe and very severe. Analysis of covariance and correlation coefficient of resistivity decreasing ratio due to increased moisture content with the basic physical properties of soil indicates that the fine grained material content (passing #200) has the most effect on the decreasing of resistivity. The plasticity index, liquid limit and dry density have minor effects in comparison to fine grained material content.

Keywords


پژوهش عمران راهوار، 1394، گزارش مطالعات ژئوتکنیک و مهندسی پی پروژه آندسازی امیرکبیر، مجتمع آلومینیم اراک.
تقی پور م.،  لشکری پور غ.ر.،  غفوری م.،  حافظی مقدس ن.، 1394، بررسی تاثیر عوامل مختلف موثر بر خوردگی فلزات در خاک با استفاده از تحلیل های آماری، زمین شناسی مهندسی، دوره 8، صفحه 95-104.
رادفر ج.، کهنسال ر.، مدحج ل.، ذوالفقاری ص.، 1383، نقشه 1:100000 زمین شناسی اراک، ورقه 5958، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
ASTM G57-95a, 2001, Standard Test Method for Field Measurement of Soil Resistivity Using the Wenner Four-Electrode Method, ASTM, West Conshohocken, PA, United States.
BS 7361, 1991, Cathodic Protection Part 1: Code of Practice for Land and Marine Applications, British Standard.
Chaker, V., Palmer, J. D., 1989, Effects of Soil Characteristics on Corrosion, ASTM International, 172 p.
Hazreek Z., Aziman M., Azhar A., Chitral W.D., Fauziah A. and Rosli S., 2015, The Behaviour of Laboratory Soil Electrical Resistivity Value under Basic Soil Properties Influences, IOP Conference Series: Earth and Environmental Science, 23, Paper No. 012002.
Liu S., Chen L, Han L., 2008, Study on Electrical Resistivity Related Parameters of Contaminated Soils, in Geotechnical Engineering for Disaster Mitigation and Rehabilitation, Liu, Deng and Chu (eds), Science Press Beijing and Springer-Verlag GmbH Berlin Heidelberg.
Martini E., Wollschläger U., Musolff A., Werban U., and Zacharias S., 2017, Principal Component Analysis of the Spatiotemporal Pattern of Soil Moisture and Apparent Electrical Conductivity, Vadose Zone Journal, 16(10), pp1-12.
Murad O. F., 2012, Obtaining Chemical Properties through Soil Electrical Resistivity, Journal of Civil Engineering Research 2012, 2(6): 120-128.
Pandey L.M.S., Shukla S.K. and Habibi A., 2015, Electrical resistivity of sandy soil, Géotechnique Letters 5, 178-185.
Peabody, A.W., and Bianchetti R.L., 2001, Peabody’s Control of Pipeline Corrosion. 2nd ed., Houston, TX, National Association of Corrosion Engineers International.
Roberge, P. R., 2007, Corrosion Inspection and Monitoring, WILEY SERIES IN CORROSION, John Wiley & Sons, Inc., Hoboken, New Jersey.
Shevnin V., Mousatov A., Ryjov A., Delgado-Rodriquez O., 2007, Estimation of clay content in soil based on resistivity modelling and laboratory measurements, Geophysical Prospecting, 55, 265–275.
Tahir S. N., N. Yahaya, N. M. Noor, L. K. Sing and A. A. Rahman, 2015, Underground Corrosion Model of Steel Pipelines Using In Situ Parameters of Soil, Journal of Pressure Vessel Technology, American Society of Mechanical Engineers, 137(5), Paper No. 051701.
Taghipour M., G. R. Lashkaripour, M. Ghafoori, N. Hafezimoghaddas, 2016, Evaluating the soil corrosion of Bushehr, Iran, based on a new classification system for corrosive soils, Anti-Corrosion Methods and Materials, 63 (5), 347 – 354.
Werban U., Kuka K., and Merbach I., 2009, Correlation of electrical resistivity, electrical conductivity and soil parameters at a long-term fertilization experiment, Near Surface Geophysics, 5-14.
Yahaya N., K.S. Lim, N.M. Noor, S.R. Othman, A. Abdullah, 2011, Effects of Clay and Moisture Content on Soil-Corrosion Dynamic, Malaysian Journal of Civil Engineering, 23(1), 24-32.