The effect of size on mechanical properties and elastic modulus of structural Leca

Document Type : Original Article

Authors

1 Faculty of Civil and Environmental Engineering, Tarbiat Modares University, myazdani@modares.ac.ir

2 Faculty of Civil and Environmental Engineering, Tarbiat Modares University,

Abstract

Remarkable set of features havecaused of widespread applications of artificial ligthweight aggregates. According to their application in various industries, the mechanical properties of these aggregates are important. Due to the absence of bedrock, determination mechanical properties of artificial ligthweight aggregate have special complexity.Ligth expanded clay aggregate (LECA) is the only industrialized ligthweigth aggregates that use in structural concrete in our country at now, which are produced with different density. In this research, to determination the diameter effect on the specific gravity, water absorption, resistance to abrasion, impact and pressure, various tests have been done on four size of structural Leca. Since there is not a standard procedure to determine the elastic modulus of ligthweigth aggregate, the combination of experimental methods and theory of composite material is used to estimate this parameter. With the combination of ligthweigth aggregate and cement-sand mortar (matrix), cylindrical composite specimens with 30% and 40% volume fractions of aggregates were cast and their elastic parameters of them are determined. Then with differential method and using elastic parameters of composite specimens and matrix, elastic modulus of ligthweigth aggregates is calculated. Test results indicate a significant effect of the grain diameter on mechanical propertiesof aggregates which produced with the same condition.

Keywords

Main Subjects


تهرانی، ف.، 1377. راهنمای جامع لیکا: دانه‌های رس منبسط شده و فرآورده‌های آن. شرکت لیکا، تهران.
رئیس قاسمی، ا.م.، پرهیزگار، ط.، فامیلی، ه.، 1390. ارائه مدل دو فازی خمیر- دانه برای تعیین نسبت اختلاط بتن‌های سبک‌دانه حاوی لیکا. مجله علمی و پژوهشی عمران مدرس، دوره یازدهم، شماره 1، ص. 16-1.
شکرچی‌زاده، م.، امدادی، آ.، لیبر، ن.ع.، 1387. بتن سبک‌دانه، دانش، فن آوری و کاربردها. موسسه انتشارات و چاپ دانشگاه تهران.
شکرچی‌زاده، م.، لیبر، ن.ع.، ماهوتیان، م.، آشوری، ا.، 1387. راهنمای کاربردی بتن سبکدانه سازه‌ای لیکا. گزارش شماره CMI-8707294، انستیتو مصالح ساختمانی دانشکده فنی دانشگاه تهران.
Baalbaki, W., Aitcin, P.C., Ballivy, G., 1992. On predicting modulus of elasticity in high-strength concrete. ACI Materials Journal, 89(5):517-520.
Chandra, S., Berntsson, L., 2002. Lightweight  Aggregate Concrete, Sceince, Technology and Applications. First ed. Noyes Publications, New York.
Chen, H.J., Yen, T., Chen, K.H., 2003. Evaluating Elastic Modulus of Lightweigt Aggregate. ACI Material Journal, 100:108-113.
Clarke, J.L., 1993. Structural Lightweight Aggregate Concrete, First ed. Blackie Academic & Professional, London.
ESCSI, 2011. Expanded Shale, Clay and Slate Institute. Document 7600, available at www.escsi.org.
Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proceeding of Royal Society London, A241(1226): 376-396.
European Union – Brite EuRam III, 2000. Composite models for short- and long-term strength and deformation properties of LWAC. Document BE96-3942/R35.
Kvande, T., 2001. Investigation of Some Material Properties for Structural Analysis of LECA Masonry. PhD Thesis, Norwegian University of Science and Technology.
LECA (Light Expanded Clay Aggregate) Co, http://www.leca.cc.
McLaughlin, R., 1977. A study of the differential scheme for composite materials. International Journal of Engineering Science,15(4):237–244.
Norris, A.N., 1985. A differential scheme for the effective moduli of composites. Mechanics of Materials, 4(1): 1–16.
Shendy, M.E., 1991. A Comparative Study of LECA Concrete Sandwich Beams With and Without Core Reinforcement. Cement and Concrete Composites, 13(2): 143–149.
Wisconsin Energy Corporation, 2004. Coal Combustion Products Utilization Handbook. Second Ed. Chapter 10: Minergy LWA – Structural, Masonry, and Geotechnical Lightweight Aggregates, United States, pp. 229.231.
Zimmerman, R.W., 1991. Elastic moduli of a solid containing spherical inclusions. Mechanics of Materials, 12(1): 17–24.
Zimmerman, R.W., 1984. Elastic moduli of a solid with spherical pores: new self-consistent method. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 21(6): 339-343