Comparison results of Two-dimensional resistivity inversion with geological conditions in the along excavation of phases 3 and 4 of Ghomroud tunnel

Document Type : Original Article

Authors

1 Department of Underground Structures, Sahel Omid Iranian Consultant Engineers Co.,

2 Professor, Department of Engineering Geology, Isfahan University

3 Department of Geology, Zayand Ab consultant engineers Co.

Abstract

The study area of this research is located in the geological zone of Sanandaj, Sirjan. In this area, numerous tectonic movements have caused a lot of faults, crushed zones and numerous fractures in the rock masses. In the Site studies of the 3rd and 4th tunnel sections of ghomroud, subplane studies have been limited and the findings from exploratory boreholes have not led to the identification of subsurface conditions in critical areas. The adverse geological conditions have caused TBM stops and long-delayed delays (about 600 days of complete stop) in the drilling process. Faults zones are main effective causes of the TBM stops. In this study, with a two-dimensional ainversion of resistivity data,, the potential of geophysical studies of the design for the identification of subsurface conditions in the drilling pathway has been investigated. Based on the results of two-dimensional analysis, the distribution of geological layers based on their specific resistance is presented. There are several zones with a very low specific resistance to the tunnel route, which is in accordance with the location of crushed and fault zones, as well as lithological changes in the drilling path. Two-dimensional processing of resistance data provides the possibility of obtaining relevant information on subterranean conditions that could be used in the stage of site studies (Locating of exploration borehole and ...) as well as in the implementation of the tunnel

Keywords

Main Subjects


آقانباتی، ع.، 1383. زمین‎شناسی ایران، انتشارات سازمان زمین‎شناسی و اکتشافات معدنی کشور، چاپ اول، 586 صفحه.
جودکی، و. و اجل‏لوئیان، ر. 1394. نقش شرایط زمین‎شناسی و سنگ‎شناسی سازندها در رخداد مخاطرات حفاری (مطالعه موردی تونل قمرود)، فصلنامة علمی پژوهشی علوم زمین، سال 25، شماره 97، صفحات 162-151.
جودکی، و. کوهیان‎افضل، ف. عالی‎انوری، ع. اجل‏لوئیان، ر. و سهرابی‎بیدار، ع.، 1396. بررسی اشکال انحلالی سطحی و میزان توسعه آب زیرزمینی در ساختگاه قطعه 4 تونل قمرود، فصلنامة علمی پژوهشی علوم زمین، سال 26، شماره 103، صفحات 40-29.
رادان، م.ی. و حفیظی، م.ک. 1386. وارون‎سازی ترکیبی داده‎های مقاومت ویژه با آرایه‎های شلومبرژه و دوقطبی-دوقطبی به منظور تعییین مسیر درز و شکاف‎های آبدار،  فصلنامه علمی پژوهشی فیزیک زمین و فضا، دوره 33، شماره 2، صفحات 75-69.
Alavi, N.M., 1994. Tectonics of the Zagros Orogenic belt of Iran: New data and interpretation. Tectonophysics, Vol. 229 (3): 211 – 238.
Badpa, M.,  Kamkar Rohani, A,.  Arab-Amiri, A.R. and Mohammadi-Vije, M., 2015. Application of resistivity data Inversion and Forward modeling in survey of hidden fault (case study: Khazar fault). Second International Congress of Applied Geology, Mashhad-Iran.
Barla, G. and Pelizza, S., 2000. TBM tunneling in difficult ground conditions, Proceedings of GeoEng 2000, Proceedings of the International Conference on Geotechnical & Geological Engineering, Melbourne, November 19–24, 2000, Technomic Publishing Company, Lancaster: 329–354.
Danielsen, B.E. and Dahlin, T., 2009. Comparison of geoelectrical imaging and tunnel documentation at the Hallandsås Tunnel: Sweden, Engineering Geology 107:118–129.
DeGroot-Hedlin, C. and Constable, S., 1990. Occam's inversion to generate smooth, two-dimensional models form magnetotelluric data. Geophysics, 55, 1613-1624.
Ganerød, G.V., Rønning, J.S., Dalsegg, E., Elvebakk, H., Holmøy, K., Nilsen, B. and Braathen, A., 2006. Comparison of geophysical methods for sub-surface mapping of faults and fracture zones in a section of the Viggja road tunnel, Norway: Bulletin of Engineering Geology and the Environment 65 (3), 231–243.
Griffiths, D.H. and Barker, R.D., 1993. Two-dimensional resistivity imaging and modelling in areas of complex geology: Journal of Applied Geophysics, 29, 211-226.
Kearey, P., Brooks, M. and Hill, I., 2002. An Introduction to Geophysical exploration, Oxford: Blackwell Science Ltd, 3rd ed. ix, 262 pp.
Loke, M.H., 2000. Electrical imaging surveys for environmental and engineering studies: A Practical Guide to 2-D and 3-D Surveys: RES2DINV Manual.
Loke, M.H. and Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44, 131-152.
Sasaki, Y., 1992. Resolution of resistivity tomography inferred from numerical simulation. Geophysical Prospecting, 40, 453-464.          
SCE (Sahel Consultant Engineers)., (2004-2008). Geotechnical studies and Technical reports of Ghomroud Tunnel. (Unpublished).
Sirles, P.C., 2006. NCHRP Synthesis 357: Use of Geophysics for Transportation Projects, Transportation Research Board of the National Academies, Washington, D.C., 2006. Available at http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_syn_357.pdf.
Stocklin, J., 1977. Structural correlation of the Alpine range between Iran central Asia. Memoire Hors-Serve No.8 dela Societe Geologique de France, 8: 333-353.