The effect of geopolymer on loess soil stabilization (Case study; Loess soil of Gorgan province)

Document Type : Original Article

Authors

1 Civil Engineering Department, Qom University, Qom, Iran

2 Engineering Geology, university of Tehran

Abstract

Losses are among the collapsible soils that, if saturated, their volume will rapidly drop. Iran is one of the countries where Loess soils are spread in different parts of it. The purpose of this study is to improve the strength parameters of loess Gorgan (North of Iran) using different ratios of geopolymer (a combination of loess and metakaolin). For this purpose, in this study, in addition to conducting index tests, a series of uniaxial compressive strength, Brazilian tensile strength, compressive wave velocity and modified compaction tests have been done. Furthermore, SEM, EDX and XRD tests have been conducted to investigate micro-structural features of non-stabilized and stabilized soils. In the samples stabilized with geopolymer, with increasing ratio of loess to metakaolin and the curing time (with fix alkaline activator solution), uniaxial compressive strength, tensile strength and compressive wave speed decreases. So that, with increasing curing time, the uniaxial compressive strength of the specimens decreased to 0.83 and the rate of this decrease was greater in the first 7 days. The results of XRD analysis and SEM images show that the disperse structure of loess soil is altered by the addition of geopolymer and by the production of alumina-silicate gel which results in increasing strength, decreasing porosity and homogeneity of loess soil structure.

Keywords


پاک نیت، ح. 1393. پایان نامه ارشد، بررسی آزمایشگاهی تثبیت خاک­های رمبنده با مواد شیمیایی و پوزولانی، دانشگاه صنعتی نوشیروانی بابل.
حائری، م. سلیمانی، س. حسینی، آ.م. و شهرابی، م.م. 1394. بررسی مقاومت تک محوری نمونه­های خاک فروریزشی تثبیت شده با مواد افزودنی مختلف، دهمین کنگره بین المللی مهندسی عمران، تبریز.
کمیته ملی سدهای بزرگ ایران، 1378. خواص ژئوتکنیکی خاک­های فروریزشی و اهمیت آن از نظر پی سدها، شماره 24.
 
Assi L.N., Deaver, E., ElBatanouny, M.K., Ziehl, P., 2016. Investigation of early compressive Strength of fly ash-based geopolymer concrete, Construction and Building Materials, 112: 807-815
B. Kim, B., Choi, H., Kang, K., Yi, C., 2011. Characteristics of natural loess (hwangtoh) paste subjected to geopolymerization, J. Korea Concr. Inst. 23 (1):121–127.
Cristelo, N., Glendinning, S., Fernandes, L., Pinto, A., 2013. Effect of alkaliactivated fly ash and portand cement on soft soil stabilization, Acta geotechnical, 8:395-405
Dassekpo, J.B.M., Zha, X., Zhan J., 2017.Synthesis reaction and compressive strength behavior of loess-fly ash based geopolymers for the development of sustainable green materials, 141: 491-500.
Davidovits, J., 1994. Geopolymers: Man-made Rock Geosynthesis and resulting development of very early high strength cement. Journal of Materials Education, 16(2&3):91-139
Dafalla, M., and Mahmoud, M., 2012. Study of the mineralogical changes of clay due to cement and lime addition using X-ray diffraction technique. Research Journal of Applied Sciences, Engineering and Technology 4(19):3746-3754
Diannopoulou I., Dimas D., Maragkos I., Panias D., 2009 “Utilization of metallurgical solid byproducts for the development of inorganic polymeric construction materials”, Journal Global Nest, 11:127-136.
Evstatiev, D. 1988. Loess Improvement Methods. Journal of Engineering Geology, 25:341-366
El Howayek, A., Huang, P., Santaga, M., 2011. Identification and behavior of collapsible soils, Joint transportation research program technical report series, SPR-3109 Report Number: FHWA/IN/JTRP-2011/12. DOI: 10.5703/1288284314625.
Feda, J., 1988. Collapse of loess upon wetting. Engineering Geology, 25: 263-269.
Futai, M.M., Admeida, M. 2002, Collapsible soil: a Theoretical and Experimental Study, EJGE Paper 0218.
Hosseini, S.E., Alizadeh, M.K., Mesbah, A. 2012. Evaluation of Shear Strength Parameters of Amended Loess through Using Common Admixtures in Gorgan, Iran. In: 7th Asian Rock Mechanics Symposium. International Society for Rock Mechanics and Rock Engineering.
Hardjito, D., Rangan, B.V., 2005. Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete, in Reseacrh Report 1.  Curtin University of Technology, Australia. p. 1-94.
International Society for Rock Mechanics (ISRM), 1978. Commission on Standardization of Laboratory and Field Tests. Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr, 15:99–103
Palomo, A., Grutzeck, M.W., Blanco, M.T., 1999. Alkali-Activated Fly Ashes, a Cement for the Future. Cem. Concr. Res., Cement and Concrete Research 29: 1323–1329.
Reznic, Y. M., 1993. Plate Load Test on Collapsible Soils. J. Geotech Eng. (ASCE), 119(3) PP: 608-615.
 
Swan, C.C., 2005. Foundations on Weak and Compressible Soils, Supplemental Notes: Foundations on Weak and Compressible Soils, 53:139 Foundations of Structures.
Singhi, B., Laskar, A.I., Ahmed, M.A., 2016. Investigation on Soil–Geopolymer with Slag, Fly Ash and Their Blending. Arabian Journal for Science and Engineering, 41(2): 393-400.
Van Deventer, J., Lukey, G., Xu, H., 2006. Effect of Curing Temperature and Silicate “Concentration on  Fly-Ash-Based Geopolymerization”, Industrial & Engineering Chemistry Research, 45:2917-2933
White, D., Harrington, D.,Thomas, Z., 2005. Fly ash soil stabilization for non-uniform subgrade soils. Volume I: Engineering properties and construction guidelines. Rep. IHRB Project TR-461, Iowa Highway Research Board, Iowa Dept. of Transportation, Ames, IA.
Yaolin, Y., Liu, C., Liu, S. 2014. Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay. American Society of Civil Engineers (ASCE), 27 (4):1-8
Zhang, M., Guo, H. El-Korchi, T., Zhang, G.  Tao, M., 2013. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials.47: 1468-1478.