Determination of block size in south heights of Mashhad city

Document Type : Original Article

Authors

1 M.Sc. Student, Department of Geology, Ferdowsi University of Mashhad, Iran

2 Professor, Department of Geology, Ferdowsi University of Mashhad, Iran,

3 . Professor, Department of Geology, Ferdowsi University of Mashhad, Iran, lashkaripour@um.ac.ir

Abstract

Ultrabasic rocks constitute a major part of ophiolites in south of Mashhad. Due to increase in the price of property and development of this city in southern highlands and also increasing construction in this area, the study of ultrabasic rocks and their joint system, from the perspective of engineering properties assessment of the rock mass and its effect on the instability of trenches and slopes in this area, has been a matter of great importance. In this study, three different experimental methods have been used to calculate RQD and the results indicate a reasonable concordance. In addition to the determination RQD, the parameters such as the weighted joint density (Wjd) and the block volume (Vb) have been calculated that these methods offers higher specifications of block size. The block size is an important input data in many rock engineering calculations and can be measured using different experimental methods and modeling.

Keywords

Main Subjects


آقانباتی ع.، 1389. زمین شناسی ایران، انتشارات سازمان زمین‌شناسی و اکتشافات معدنی کشور.
قنادان ا.، الماسیان م.، قائمی‌‌ف.، نادری ن.، 1388. تحلیل ساختاری ناحیه جنوب مشهد با نگرشی ویژه بر سیستم گسلی سنگ بست - شاندیز.  مجله زمین، شماره 4، صفحات 97-106 .
حافظی مقدس ن.، قزی ا.، 1386. اهمیت ارزیابی خطرات لرزه‌ای در توسعه شهری (مطالعه موردی شهر مشهد). بیست و هشتمین گردهمایی علوم زمین.
نقشه زمین‌شناسی 1:100000 مشهد، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
نقشه زمین‌شناسی 1:100000 طرقبه، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
Alavi, M., 1991. Sedimentary and structural characteristics of the Paleo-Tethysremnants in northeastern Iran. Geological Society of  America Bulletin, 103(8): 983–992.               
Barton, N., Lien, R., and Lunde. J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6 (4): 183-236.
Bieniawski, Z.T., 1973. Engineering classification of jointed rock masses. The Civil Engineer in South Africa, 15: 335-344.
Boadu, F.K., Long, L.T., 1994. The fractal character of fracture spacing and RQD. International Journal Rock Mechanics and Mining Sciences & Geomechanics. Abstr., 31(2): 127–134.
Choi, S.Y., Park, H.D., 2004. Variation of rock quality designation (RQD) with scanline orientation and length: a case study in Korea.  International Journal Rock Mechanics & Mining Science, 41:  207-221.
Cruden, D. M., 1977. Describing the size of discontinuities. International Journal Rock Mechanics and Mining Sciences & Geomechanics, Abstr., 14: 133-137.
Deere D.U., 1968. Geological considerations. Rock Mechanics in Engineering Practice, in: Stagg, K.G., Zienkiewicz, O.C. (eds),  John Wiley & Sons, London,  pp. 1-20.
Goodman, R.E., 1995. Block theory and its application. Geotechnique, 45(3): 383-423.
Heliot, D., 1988. Generating a blocky rock mass. International Journal Rock Mechanics and Mining Sciences & Geomechanics. Abstr.,  25(3): 127-138.
Hudson J.A., Priest S.D., 1983. Discontinuity frequency in rock masses. International Journal Rock Mechanics and Mining Sciences & Geomechanics. Abstr., 20 (2): 73-89.
Hudson, J. A., Priest, S. D., 1979. Discontinuity and rock mass geometry. International Journal Rock Mechanics and Mining Sciences & Geomechanics. Abstr., 16: 339-362.
International Society for Rock Mechanics (ISRM), Commission on standardization of laboratory and field tests., 1978. Suggested methods for the quantitative description of discontinuities in rock masses. International Journal Rock Mechanics and Mining Sciences & Geomechanics. Abstr., 15(6): 319-368.
Khamehchiyan, M., Rahimi Dizadji, M., Esmaeili, M., 2013. Application of rock mass index (RMi) to the rock mass excavatability assessment in open face excavations. Geomechanics and Geoengineering: An International Journal. DOI: 10.1080/17486025.2013.806996
Kim, B. H., Cai, M., Kaiser, P. K., Yang, H. S., 2007. Estimation of block sizes for rock masses with non-persistent joints. Rock Mechanics and Rock Engineering, 40(2): 169-192.
Lu, P., Latham, J. P., 1999. Developments in the assessment of in-situ block size distributions of rock masses. Rock Mechanics and Rock Engineering. 32 (1): 29–49.
Majidi, B., 1980. The geochemistry and origin of the Upper Paleozoic basic and ultrabasic lava of NE Iran. Geol. Surv. Iran; Inter. Rep., 22p.
Markovaara, M., Laine, E., 2012. MATLAB script for analyzing and visualizing scanline data. Computer and Geosciences, 40: 185-193.
Palmstrom, A., 1995. RMi – a rock mass characterization system for rock engineering purposes. PhD thesis, University of Oslo, Department of Geology, 400 p.
Palmstrom, A., 2000. Block size and block size distribution. Paper presented at the workshop on “Reliability of classification system” in connection with the GeoEng 2000 Conference, Melbourne, 18-24 November2000.
Palmstrom, A., (2005). Measurements of and correlation between block size and rock quality designation (RQD). Tunnels and Underground Space Technology, 20: 362-377.
Saliu, M. A., Olaleye, B. M., Haleem. J. O., 2012. Modified volumetric joint account to check for suitability of granite outcrops for dimension stone production. Journal of Engineering Science and Technology. 7(5): 646-660.
Saliu, M.A., Akande, J.M., 2012. Fracture characterization: an effective technique for ensuring accurate blast design. Journal of Emerging Trends in Engineering and Applied Sciences (JETEAS), 2(6): 1015-1019.
Sen, Z., Eissa, E. A., 1992. Rock quality charts for log-normally distributed block size. International Journal Rock Mechanics and Mining Sciences & Geomechanics. Abstr., 29: 1-12.
Sonmez, H., Nefesliglu, H.A., Gokceoglu, C., 2004. Technical note determination of Wjd on rock exposures including wide spaced joint. Rock Mechanics and Rock Engineering. 37(5): 403-413.
Wang, L.G., Yamashita, S., Sugimoto, F., Pan, C., Tan, G., 2003. A methodology for predicting the in situ size and shape distribution of rock blocks. Rock Mechanics and Rock Engineering. 36 (2): 121–142.