بهبود عملکرد لایه های جاذب با میرایی افزایشی در مدل سازی عددی انتشار امواج سطحی به روش اجزا محدود

نوع مقاله: مقاله پژوهشی

نویسندگان

1 عضو هیات علمی، گروه عمران، واحد شهرکرد، دانشگاه آزاد اسلامی، شهرکرد، ایران

2 عضو هیات علمی دانشگاه صنعتی شیراز

چکیده

برنامه های اجزا محدود (FE) به طور فزاینده ای برای شبیه سازی انتشار امواج الاستیک و مسائل پراکندگی بخصوص در روش های امواج سطحی استفاده می گردد. مشکل رایج هنگام استفاده از چنین روشهایی، بحث حذف بازتاب های ناخواسته از مرزهای مدل است که هنوز موضوعی چالش برانگیز می باشد. در این مقاله، به منظور به حداقل رساندن امواج بازتابی از مرزها و افزایش رزولوشن نتایج به ارزیابی پارامترهای موثر در جهت بهبود عملکرد روش لایه های جاذب میرایی افزایشی تحت عنوان الید (ALID) پرداخته شده است در این خصوص، پس از شناسایی مشخصات و نوع الید مناسب در نرم افزار آباکوس، تاثیر تعداد و ضخامت لایه های الید در خاک های مختلف با سرعت های موج برشی 200، 800 و 2000 متربرثانیه بر میزان میرایی دامنه امواج دریافتی در مرزها بررسی شده است. نتایج نشان دادند که در نظر گرفتن الید با لایه های افزایش تدریجی میرایی در مقایسه با میرایی ثابت و دوبرابر شونده به نحو چشمگیری از بازتاب امواج به داخل محیط جلوگیری می کند و خاک سخت نیاز به لایه های الید بیشتر و خاک سست بخاطر میرایی بیشتر نیاز به لایه های الید کمتر دارد. همچنانکه افزایش تعداد لایه های الید موثرتر از افزایش ضخامت آنها می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Improving the performance of absorbing layers with increasing damping in the numerical modeling of surface waves propagation using finite element method

نویسندگان [English]

  • Sohrab Mirassi 1
  • Hossein Rahnema 2
1 Assistant Professor, Department of Civil Engineering, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
2 Assistant Professor, Department of Civil and Environmental Engineering, Shiraz University of Technology, Shiraz, Iran
چکیده [English]

Finite Element codes (FE) are increasingly used to simulate the propagation of elastic waves and dispersion, especially in surface-wave techniques. The common problem when using such methods is unwanted reflections from the boundaries of the model, which is still a challenging issue. In this paper, the effect of different parameters is evaluated to improve the performance of Absorbing Layers using Increasing Damping (ALID) in order to reduce the reflected waves from the boundaries and increase the resolution of the results. In this regard, after identifying the appropriate specifications of ALID layers in Abaqus software, the effect of thickness and number of ALID layers in different soils media with shear wave velocities of 200, 800 and 2000 m / s are investigated on the amplitude damping of incident waves at the boundaries. The results show that applying ALID with the gradual increasing damping significantly prevents the reflection of the waves into the media in comparison with the constant and double increasing damping. Furthermore, the hard soil requires more ALID layers and soft soil including high damping needs lower ALID layers. also increasing the number of ALID layers are more effective than increasing their thickness.

کلیدواژه‌ها [English]

  • Reflected waves
  • ALID
  • Absorbing Layers using Increasing Damping
  • Absorbing boundary
  • Finite Element
ABAQUS v6.14 Abaqus Analysis User's Guide 2014.
Allo, O.J., Ayolabi, E.A. and Oladele, S., 2019. Investigation of near-surface structures using seismic refraction and multi-channel analysis of surface waves methods—a case study of the University of Lagos main campus. Arabian Journal of Geosciences, 12(7): p.257.
Asmussen, B., 2011b. Test procedures for the determination of the dynamic soil characteristics. Deliverable D1.1. Railway Induced Vibration Abatement Solutions (pp. 1–107).
Atkinson, J.H., 2000. Non-linear soil stiffness in routine design. Géotechnique, 50(5): pp.487-508.
Bashir, N., Alhaj, A. and Torgashov, E., 2018. Application of Multi-Channel Analysis of Surface Waves Method to Determine Optimum Parameter Settings in Karst Terrain in Southwest Missouri. International Journal of Science and Research, pp. 427-431.
Berenger, J.P., 1994. A perfectly matched layer for the absorption of electromagnetic waves. Journal of computational physics, 114(2): pp.185-200.
Bonnet M., 1999. Boundary integral equation methods for solids and fluids. Wiley, Chichester, UK.
Castaings, M., Bacon, C., Hosten, B. and Predoi, M.V., 2004. Finite element predictions for the dynamic response of thermo-viscoelastic material structures. The Journal of the Acoustical Society of America, 115(3): pp.1125-1133.
Chai, H.Y., Phoon, K.K., Goh, S.H. and Wei, C.F., 2012. Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities. Journal of Applied Geophysics, 83: pp.107-119.
Connolly, D., 2013. Ground borne vibrations from high speed trains, Ph.D. thesis, The University of Edinburgh.
Davoodi, M., Pourdeilami, A., Jahankhah, H. and Jafari, M.K., 2018. Application of perfectly matched layer to soil-foundation interaction analysis. Journal of Rock Mechanics and Geotechnical Engineering, 10(4): pp.753-768.
Drozdz, M. B., 2008. Efficient finite element modelling of ultrasound waves in elastic media (Doctoral dissertation, Imperial College London). Imperial College London.
Drozdz, M., Skelton, E., Craster, R.V. and Lowe, M.J.S., Modeling bulk and guided wave propagation in unbounded elastic media using absorbing layers. Review of Progress in QNDE, 26, p.87.
Foti, S., Lai, C.G., Rix, G.J. and Strobbia, C., 2014. Surface wave methods for near-surface site characterization. CRC press.
Hesse, D. and Cawley, P., 2006. Surface wave modes in rails. The Journal of the Acoustical Society of America, 120(2): pp.733-740.
Houbrechts, J., Schevenels, M., Lombaert, G., Degrande, G., Rücker, W., Cuellar, V. and Smekal, A., 2011. Test procedures for the determination of the dynamic soil characteristics. Railway Induced Vibration Abatement Solutions RIVAS WP, 1.
Israeli, M. and Orszag, S.A., 1981. Approximation of radiation boundary conditions. Journal of computational physics, 41(1), pp.115-135.
 Jokar, M.H., Boaga, J., Petronio, L., Perri, M.T., Strobbia, C., Affatato, A., Romeo, R. and Cassiani, G., 2019. Detection of lateral discontinuities via surface waves analysis: A case study at a derelict industrial site. Journal of Applied Geophysics.
Joshi, A. and Bhardwaj, P., 2018. Site characterisation using Multi-channel Analysis of Surface Waves at various locations in Kumaon Himalayas, India. J. Ind. Geophys. Union (May 2018), 22(3): pp.265-278.
Khazaei, J., Amiri, A., 2017. Evaluation of the dynamic responses of high rise buildings with respect to the direct methods for soil-foundation-structure interaction effects and comparison with the approximate methods. Journal of Structural and Construction Engineering, 4(2): 106-122. doi: 10.22065/jsce.2017.71513.1028
Komatitsch, D., Vilotte, J.P., Vai, R., Castillo‐Covarrubias, J.M. and Sánchez‐Sesma, F.J., 1999. The spectral element method for elastic wave equations—application to 2‐D and 3‐D seismic problems. International Journal for numerical methods in engineering, 45(9): pp.1139-1164.
Lin, S. and Ashlock, J.C., 2014. Multimode Rayleigh wave profiling by hybrid surface and borehole methods. Geophysical Journal International, 197(2): pp.1184-1195.
Lin, S. and Ashlock, J.C., 2016. Surface-wave testing of soil sites using multichannel simulation with one-receiver. Soil Dynamics and Earthquake Engineering, 87: pp.82-92.
Lin, S., 2014. Advancements in active surface wave methods: modeling, testing, and inversion. PhD dissertation, Citeseer.
Liu, G.R. and Jerry, S.Q., 2003. A non-reflecting boundary for analyzing wave propagation using the finite element method. Finite elements in analysis and design, 39(5-6), pp.403-417.
Luo, W. and Rose, J.L., 2007. Phased array focusing with guided waves in a viscoelastic coated hollow cylinder. The Journal of the Acoustical Society of America, 121(4): pp.1945-1955.
Mirassi, S. and Rahnema, H., 2019. Effect of frequency content of seismic source load on Rayleigh and P waves in soil media with cavity', Journal of Structural and Construction Engineering, (in press), pp. -. doi: 10.22065/jsce.2019.176403.1808
Miriano, C., Cattoni, E. and Tamagnini, C., 2016. Advanced numerical modeling of seismic response of a propped rc diaphragm wall. Acta Geotechnica, 11(1): 161-175.
Moczo P, Kristek J, Vavrycuk V, Archuleta RJ, Halada L., 2002. 3D heterogeneous staggered-grid finite difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities. Bulletin of the Seismological Society of America, 92(8): 3042-3066.
Ólafsdóttir, E.Á., 2016. Multichannel analysis of surface waves for assessing soil stiffness. Doctoral dissertation.
Olivier, G., Brenguier, F., Campillo, M., Lynch, R. and Roux, P., 2015. Body-wave reconstruction from ambient seismic noise correlations in an underground mine. Geophysics, 80(3): pp.KS11-KS25.
Olsson, D., 2012. Numerical simulations of energy absorbing boundaries for elastic wave propagation in thick concrete structures subjected to impact loading. Thesis, Umeå University.
Park, C.B. and Carnevale, M., 2010. Optimum MASW survey-revisit after a decade of use. Proceedings of GeoFlorida, pp.1303-1312.
Rajagopal, P., Drozdz, M., Skelton, E.A., Lowe, M.J. and Craster, R.V., 2012. On the use of absorbing layers to simulate the propagation of elastic waves in unbounded isotropic media using commercially available finite element packages. NDT & E International, 51: pp.30-40.
Rix, G.J. and Leipski, E.A., 1991. Accuracy and resolution of surface wave inversion. Recent advances in instrumentation, data acquisition and testing in soil dynamics. Proceedings of sessions sponsored by the geotechnical engineering division of the american society of civil engineers in conjunction with the asce convention orlando, florida. october 21, 1991. Publication of: American Society of Civil Engineers.
Ryden, N., Park, C.B., Ulriksen, P. and Miller, R.D., 2004. Multimodal approach to seismic pavement testing. Journal of geotechnical and geoenvironmental engineering, 130(6): pp.636-645.
Schmelzbach, C., Jordi, C., Sollberger, D., Doetsch, J., Kaufmann, M., Meijer, W. Y. & Horstmeyer, H. (2015, June). Understanding the impact of karst on seismic wave propagation-a multi-method geophysical study. In 77th EAGE Conference and Exhibition-Workshops.
Semblat JF, Pecker A., 2009. Waves and Vibrations in Soils: Earthquakes, Traffic, Shocks, Construction
Works, IUSS Press: Pavia, Italy.
Xia, J., Miller, R.D., Xu, Y., Luo, Y., Chen, C., Liu, J., Ivanov, J. and Zeng, C., 2009. High-frequency Rayleigh-wave method. Journal of Earth Science, 20(3): 63-579.
Yoon, S. and Rix, G.J., 2009. Near-field effects on array-based surface wave methods with active sources. Journal of Geotechnical and Geoenvironmental Engineering, 135(3), pp.399-406.