مدل‌سازی آزمایشگاهی ارتعاشات ناشی از برش سنگ‌های تزئینی کربناتی و گرانیتی با روش‌های آماری و هوش مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه صنعتی شاهرود

2 استاد دانشده معدن دانشگاه صنعتی شاهرود

3 گروه مهندسی معدن، دانشکده مهندسی معدن و مواد دانشگاه صنعتی ارومیه

چکیده

در این پژوهش میزان ارتعاش ناشی از برش سنگ‌های تزئینی کربناتی و گرانیتی از طریق ساخت یک دستگاه برش در مقیاس آزمایشگاهی مورد مطالعه قرار گرفته است. برای این منظور پارامترهای 7 نمونه سنگ کربناتی و 5 نمونه سنگ گرانیتی تعیین شده و 211 آزمایش برش صورت گرفته است. مدل‌های پیش‌بینی کننده با ترکیب‌های مختلفی از پارامترهای فیزیکی و مکانیکی سنگ‌ها با روش‌های آماری و هوش مصنوعی ساخته و برسی شده‌اند. همچنین عملکرد بهترین مدل‌ها بر اساس چهار معیار برای دو نوع از داده‌های آزمون شامل داده‌هایی که جنس سنگ‌ آن‌ها در ایجاد مدل موجود بوده و دسته‌ای که نوع سنگ آن‌ها در ایجاد مدل موجود نبوده ارزیابی شده است. در نهایت بر اساس
استراتژی‌های مختلف اولویت‌بندی، نتایج معیارهای ارزیابی، سرعت، سهولت و قابلیت اطمینان روش ایجاد مدل، بهترین مدل برای هر خانواده از سنگ‌ها معرفی شده است. نتایج نشان داده است که بهترین مدل برای هر دو خانواده از سنگ‌های کربناتی و گرانیتی به صورت مدل رگرسیون چند متغیره غیرخطی است. پارامترهای مشترک ورودی در این دو مدل عمق برش، نرخ برش و فاکتور سایندگی شیمازک بوده است. علاوه بر این پارامترها، در سنگ‌های کربناتی مدول یانگ و در سنگ‌های گرانیتی مقاومت فشاری تک محوری نیز جزو پارامترهای ورودی بوده‌اند که مطابق با نتایج تحلیل حساسیت برای تعیین تأثیرگذارترین پارامترها در هر خانواده از سنگ‌ها بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Laboratory modeling of the vibration due to sawing carbonate and granite ornamental stones using statistical and soft computing methods

نویسندگان [English]

  • Sadjad Mohammadi 1
  • Reza Mikaeil 3
1 Shahrood university of technology
3 Faculty of Mining and Metallurgical Engineering, Urmia University of Technology, Band road, Urmia, West Azerbaijan, Iran
چکیده [English]

In this paper vibration of cutting machine during sawing carbonate and granite ornamental stones was investigated through making a cutting machine on a laboratory scale. For this purpose, properties 7 samples of carbonate stones and 5 samples of granite stones were measured and 211 sawing experiments were performed. Predictives models were developed using different variation of physical and mechanical parameters by incorporating statistical and intelligent methods. The performance of the developed models was evaluated using R2, RMSE, MAPE and VAF criteria for two different types of test datasets consists of Type A and B; data type A included data for rock samples available at the learning stage and data type B included data for rock samples not available in the training phase. The best model for each group of rocks was introduced by taking ranking strategies, evaluation criteria, speed, easiness and reliability of developing method into account. Results indicated that the best model for both rock type was in the form of multivariate nonlinear regression. The similar parameters of these models were depth of cut, feed rate and Schmiazek abrasivity factor. In addition, Young’s modulus and UCS were the special parameters in the carbonate and granite rock models, respectively. These special parameters were in accordance with the finding of sensitivity analysis results.

کلیدواژه‌ها [English]

  • Ornamental stones
  • Rock cutting machine
  • vibration
  • Laboratory modeling
سلطانی محمدی، س.، لک، م.، محمدی، س.، کربلا، م.ا.، 1393. تخمین ارتفاع سطح ایستابی در روزهای مختلف سال با استفاده از شبکة عصبی مصنوعی شعاعی؛ مطالعة موردی: دشت بهبهان. نشریه علمی- ترویجی محاسبات نرم، شماره پنجم، ص 93-82.
عطایی، م.، 1395. تصمیم­گیری چند معیاره. چاپ چهارم، انتشارات دانشگاه صنعتی شاهرود.
علیپور، ع.، مختاریان اصل، م.، میکائیل، ر.، 1398. ارائه رابطه غیرخطی مبتنی بر الگوریتم رقابت استعماری بهمنظور پیشبینی قابلیت برش- نرخ تولید سنگ تزئینی با استفاده از دستگاه سیم برش الماسه. مجله انجمن زمین­شناسی مهندسی ایران، جلد دوازدهم، شماره 1، ص 42-33.
Hoseinian, F. S., Abdollahzade, A., Mohamadi, S. S., Hashemzadeh, M., 2017. Recovery prediction of copper oxide ore column leaching by hybrid neural genetic algorithm. Transactions of Nonferrous Metals Society of China, 27(3): 686-693.
International Society of Rock Mechanics (ISRM). 1981. Rock characterization testing and monitoring. ISRM Suggested methods. Brown ET (ed.).
Jong, Y. H., and Lee, C. I., 2004. Influence of geological conditions on the powder factor for tunnel blasting. International Journal of Rock Mechanics and Mining Sciences, 41: 533-538.
Mikaeil, R., Ataei, M., Yousefi, R., 2011. Application of a fuzzy analytical hierarchy process to the prediction of vibration during rock sawing. Mining Science and Technology (China), 21(5): 611-619.
Mikaeil, R., Ataei, M., Ghadernejad, S., Sadegheslam G., 2014. Predicting the relationship between system vibration with rock brittleness indexes in rock sawing process. Archive of Mining Science, 59 (1): 139-153.
Ozcelik, Y., Kulaksiz, S., Engin, L. C., Eyuboglu, A. S., 2001. Investigation into Relationship Between Cutting Depth and Vibration in Cutting Process. Presented in 17th International Mining Congress and Exhibition of Turkey.
Ozcelik, Y., Yilmazkaya, E., 2011. The effect of the rock anisotropy on the efficiency of diamond wire cutting machines. International Journal of Rock Mechanics and Mining Sciences, 48(4): 626-636.
Vapnik ,V N., 1995. The nature of statistical learning theory. Springer–Verlag.