بررسی امکان فعالیت مجدد گسل‌ها و تحلیل پایداری چاه براثر تخلیه مخازن هیدروکربنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی نفت، دانشگاه آزاد اسلامی، واحد امیدیه، امیدیه، ایران

2 Department of Petroleum Engineering, Omidiyeh Branch,Islamic Azad University,Omidiyeh, Iran

چکیده

با گذشت زمان و تولید از مخزن، فشار منفذی لایه تولیدی در صورت نبود منبع تامین فشار کاهش می‌یابد. این کاهش فشار بطور مستقیم باعث تغییر در مقدار و جهت تنش های برجا می‌شود. تغییر در مقدار تنش های برجا می تواند باعث تغییرات ژئومکانیکی در مخزن و لایه های تولیدی گردد. درصورتیکه لایه های مخزن گسل خورده باشد، کاهش فشار مخزن می تواند منجر به فعال شدن این گسل ها و همچنین تغییر مقاومت کششی دیواره چاه جهت حفاری جدید در لایه تخلیه شده گردد. این تحقیق در یکی از مخازن جنوب غرب ایران انجام شده است. در این مخزن سه لایه تولیدی با ضخامت های متفاوت مورد بررسی قرار گرفتند و احتمال فعالیت مجدد گسل‌ها و مقاومت کششی در حالت اولیه و پس از افت فشار 1800 پوند بر اینچ مربع مورد ارزیابی قرار گرفت. در لایه شماره 1 مقدار مسیر تنش 67/0 بدست آمد که با توجه به اینکه مماس بر مقدار تنش بحرانی می باشد، با تولید از مخزن و کاهش فشار مخزن در این لایه گسل‌ها مجددا فعال خواهند شد. همچنین در این لایه حداکثر وزن گل مجاز برای عدم شکست کششی سنگ در حالت اولیه 81/17 -13/25 پوند بر گالن و پس از کاهش 1800 پوند بر اینچ مربع فشار لایه، در محدوده ی 07/15-42/23 پوند بر گالن قرار دارد. همچنین مقاوم ترین حالت دیواره چاه، حفاری با زاویه 60 درجه و در جهت تنش افقی حداقل می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Reactivation of Fault and Wellbore Stability Analysis by the Depletion of Hydrocarbon Reservoirs

نویسندگان [English]

  • Morteza Hasanzadeh 1
  • Mohammad Abdideh 2
1 Department of Petroleum Engineering, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
2 Department of Petroleum Engineering, Omidiyeh Branch,Islamic Azad University,Omidiyeh, Iran
چکیده [English]

Over time and production from the reservoir, the pore pressure of the production layer decreases if there is no source of pressure supply. This reduction in pressure directly alters the amount and direction of stresses. Changes in the amount of stresses can cause geomechanical changes in the reservoir and production layers. If the reservoir layers are faulted, reducing the reservoir pressure can activate these faults and also change the tensile strength of the well bore for new drilling in the discharged layer. This research was conducted in one of the reservoirs of southwestern Iran. In this reservoir, three production layers with different thicknesses were examined and the probability of reactivation of faults and tensile strength in the initial state and after the pressure drop of 1800 psi was evaluated. In layer 1, the value of the stress path was 0.67, which due to the fact that it is tangent to the critical stress value, the faults will be reactivated by producing from the reservoir and reducing the reservoir pressure in this layer. Also in this layer, the maximum weight of the drilling mud allowed for non-failure of rock traction in the initial state is 17.81- 25.13 PPG and after a reduction of 1800 psi of layer pressure, it is in the range of 15.07- 23.42 PPG. . In addition, the most resistant state of the well bore is drilling with an angle of 60 degrees and in the direction of minimum horizontal stress.

کلیدواژه‌ها [English]

  • In situ stresses
  • Reservoir depletion
  • tensile strength
  • Pressure drop effect
  • Faults reactivation
پوریا. بهنود, عامری. محمدجواد, بررسی ژئومکانیکی ایجاد شکاف در مخازن تخلیه‌شده. پژوهش نفت, 1396. سال بیست و هفتم، صفحه 44 - 54.
فتحی. حسن، پورکرمانی. محسن، آبدیده. محمد، بوذری. سهیلا، الماسیان. محمود، تغییرات میدان تنش و رژیم گسلش جهت تعیین امکان فعالیت مجدد گسل‌ها در پوش‌سنگ و مخزن بر اثر تولید و فشار افزایی در میدان نفتی آغاجاری جنوب غرب ایران فصلنامۀ کواترنری ایران، (علمی – پژوهشی)، دورۀ 4، شمارۀ 3، پاییز 1397، ص 235-251.
نجیبی، ع. (1390). انطباق پارامترهای مکانیکی سنگ با داده‌های پتروفیزیکی در مخزن کوپال و تأثیر آن بر تحلیل پایداری دیواره چاه. پایان‌نامه کارشناسی ارشد، دانشگاه تربیت‌معلم.
Aadnoy, B. and M. Chenevert. 1987. Stability of highly inclined boreholes (includes associated papers 18596 and 18736). SPE Drilling Engineering, 2(04): p. 364-374.
Al-Ajmi, A., 2006. Wellbore stability analysis based on a new true-triaxial failure criterion. KTH.
Amiri M, Lashkaripour GR, Ghabezloo S, Hafezi Moghaddas N, HeidariTajareh M., 2018. 3D spatial model of Biot’s effective stress coefficient using well logs, laboratory experiments and geostatistical method in the Gachsaran oil field, south-west of Iran. Bull Eng Geol Environ.
Amiri M, Lashkaripour GR, Ghabezloo S, Moghaddas NH, Tajareh MH, 2019. Mechanical earth modeling and fault reactivation analysis for CO 2-enhanced oil recovery in Gachsaran oil field, south-west of Iran., Environmental Earth Sciences. Feb 1;78(4):112.
Bowes, C. and R. Procter, 1997. Drillers Stuck Pipe Handbook. Ballater, Scotland: Procter & Collins Ltd.
Canady, W.J. 2011. A method for full-range Young's modulus correction. in North American Unconventional Gas Conference and Exhibition. Society of Petroleum Engineers.
Cheatham Jr, J., 1984. Wellbore stability. Journal of petroleum technology. 36(06): p. 889-896.
Doser, D.I., M.R. Baker, and D.B. Mason, 1991. Seismicity in the War-Wink gas field, Delaware Basin, west Texas, and its relationship to petroleum production. Bulletin of the Seismological Society of America, .81(3): p. 971-986.
Fjar, E., 2008. Petroleum related rock mechanics. Vol. 53. Elsevier.
Gao, Q., 2019. Initiation Pressure and Corresponding Initiation Mode of Drilling Induced Fracture in Pressure Depleted Reservoir. Journal of Energy Resources Technology, 141(1): p. 012901.
Garrouch, A.A. and A.S. Ebrahim. 2001. Assessment of the stability of inclined wells. in SPE Western Regional Meeting. Society of Petroleum Engineers.
Grasso, J.-R., 1992. Mechanics of seismic instabilities induced by the recovery of hydrocarbons. Pure and Applied Geophysics. 139(3-4): p. 507-534.
Hussain, R., 2002. Well Engineering and Construction. Entrac Consulting, London.
Kanfar, M.F., Z. Chen, and S. Rahman, 2017. Analyzing wellbore stability in chemically-active anisotropic formations under thermal, hydraulic, mechanical and chemical loadings. Journal of Natural Gas Science and Engineering, 41: p. 93-111.
Kidambi T, Kumar GS, 2016. Mechanical Earth Modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf. J Pet Sci Eng 141:38–51. https ://doi. org/10.1016/j.petro l.2016.01.003
Li, X. and K. Gray, 2015. Wellbore stability of deviated wells in depleted reservoir. in SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
Lund, B. and M. Zoback, 1999. Orientation and magnitude of in situ stress to 6.5 km depth in the Baltic Shield. International Journal of Rock Mechanics and Mining Sciences, 36(2): p. 169-190.
Maleki, S., 2014. Comparison of different failure criteria in prediction of safe mud weigh window in drilling practice. Earth-Science Reviews, 136: p. 36-58.
Moos, D., 2003. Comprehensive wellbore stability analysis utilizing quantitative risk assessment. Journal of Petroleum Science and Engineering, 38(3-4): p. 97-109.
Motiei, H., 2010. An Introduction to Zagros Petroleum Reservoirs Evaluation, (For Geologist), first ed. V:2, P 681. [In Persian].
Senseny, P.E., Pfeifle, T.W., 1984. Fracture toughness of sandstones and shales, in: The 25th US Symposium on Rock Mechanics (USRMS).
Schutjens, P.M, 2007. Wellbore stress change due to drawdown and depletion: An analytical model and its application. in International Petroleum Technology Conference. International Petroleum Technology Conference.
Stewart, D. and P. BYERLY, 1994. Reorientation of propped refracture treatment. SPE, 28078.
Zeynali, M.E., 2012. Mechanical and physico-chemical aspects of wellbore stability during drilling operations. Journal of Petroleum Science and Engineering, 82: p. 120-124.
Zoback, M., 2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): p. 1049-1076.
Zoback, M.D. and J.C. Zinke, 2002. Production-induced normal faulting in the Valhall and Ekofisk oil fields, in The mechanism of induced seismicity, Springer. p. 403-420.
Zoback, M.D., A.D. Day-Lewis, and S. Kim, 2010. Predicting changes in hydrofrac orientation in depleting oil and gas reservoirs, US Patent No. 784,889,5B2.
 Zoback, M.D., Reservoir geomechanics. 2010: Cambridge University Press, Cambridge, United Kingdom.