بررسی وضعیت واکنش پذیری شیمیایی بتن برخی از سازه های آبی بزرگ کشور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای زمین شناسی مهندسی گروه زمین شناسی دانشگاه اصفهان

2 گروه زمین شناسی، دانشگاه اصفهان

3 گروه زمین شناسی دانشگاه اصفهان

چکیده

واکنش‌پذیری شیمیایی بتن یکی از عوامل مهم تخریب و نابودی سازه‌های بتنی در بلند مدت است. در این تحقیق به بررسی بتن
سازه‌های آبی بزرگ در جنوب کشور و برآورد میزان واکنش‌پذیری شیمیایی بتن آنها پرداخته شده است. بدین منظور، بخش‌های بتنی شش سد بزرگ کشور طی بازدیدهای میدانی و اخذ بیش از 16 نمونه بتن و 15 نمونه رسوب رویه بتن بررسی شده است. سازه‌های بررسی شده شامل سد دز، سد بالارود، سد گدارلندر، سد گتوند علیا، سد کرخه و سد جره رامهرمز است. با استفاده از بررسی‌های صحرایی، تعیین نمایه میزان تخریب (Damage Rating Index=DRI) بتن بر روی مقاطع صیقلی و بررسی ترکیب شیمیایی رسوبات رویه و شیرابه‌ی بتن توسط آنالیز XRD، میزان واکنش‌پذیری شیمیایی بتن و تخریب حاصل از آن بررسی شده است. روش تعیین نمایه میزان تخریب یک روش پتروگرافی برای کمی‌سازی وضعیت تخریب بتن حاصل از واکنش‌پذیری قلیایی سنگدانه‌های بتن است. نتایج تعیین نمایه میزان تخریب و بررسی‌های صحرایی نشان می‌دهد که به جزء سد دز تمام سازه‌های بتنی مورد بررسی دچار واکنش‌های قلیایی سنگدانه‌ها هستند ولی هنوز آنقدر توسعه نیافته است که آسیب جدی به بتن وارد کرده باشد. نتایج آنالیزهای XRD و شواهد صحرایی حاکی از وجود واکنش‌پذیری شیمیایی از نوع حمله خارجی سولفات‌ها در قسمت‌های مورد بررسی سد جره و بالارود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the chemical reactivity of concrete in some large dams of Iran

نویسندگان [English]

  • Mohammad Reza Hatef 1
  • Mojtaba Kamani 2
  • Akbar Ghazifard 3
1 Department of Geology, University of Isfahan, Isfahan, Iran
2 Department of geology, University of Isfahan
3 Department of Geology/University of Isfahan
چکیده [English]

The chemical reactivity of concrete is one of the most important factors in long term damage and destruction of concrete structures. In this study, the chemical reactivity of some large concrete structures in the south of Iran has been investigated. For this purpose, the concrete sections of six large dams have been studied during field visits and taking more than 16 concrete samples and sediment of concrete surface. The investigated structures include Dez, Balaroud, Godarlandar (Masjed-Soleyman), Gotvand Uleya, Karkheh, and Jarreh (Ramhormoz) dams. Using field investigations, determination of Damage Rating Index (DRI), and chemical composition of the surface sediments and leachate of the concrete, the chemical reactivity of the concrete and its degradation have been investigated. The method of DRI is the petrographic method to quantify the state of damage of concrete by the alkali-aggregate reaction. The results of DRI and field studies show that except for Dez dam, all concrete structures under study have alkali-aggregate reaction, but it is not yet developed enough to cause serious damage to its concrete. The results of the XRD whit emphasis field evidence indicate the presence of external sulfate attacks in the studied parts of Jarreh and Balaroud dams.

کلیدواژه‌ها [English]

  • Concrete
  • Aggregate chemical reactivity
  • Dam
  • Damage rating index
Alberti, A., Pongiluppi, D., and Vezzalini, G., 1982. The crystal chemistry of natrolite, mesolite and    scolecite. Neues Jahrb. Miner. Monatsh, 231-248.
ASTM C856 / C856M-20, 2020. Standard Practice for Petrographic Examination of Hardened Concrete, ASTM International, West Conshohocken, PA, www.astm.org DOI: 10.1520/C0856_C0856M-20.       
Berra, M., Mangialardi, T. and Paolini, A.E., 2018. Alkali Release from Aggregates in Long-Service Concrete Structures: Laboratory Test Evaluation and ASR Prediction, Materials, 11(8): 1393.
Blight, GE., Alexander, MG., 2011. Alkali-Aggregate Reaction and Structural Damage to Concrete, CRC Press, Taylor & Francis Group, London, UK.
Chatterji, S., 2005. Chemistry of alkali–silica reaction and testing of aggregates, Cement & Concrete Composites 27: 788-795.
Drolet, C., Duchesne, J. and Fournier, B., 2017. Validation of the alkali contribution by aggregates to the concrete pore solution. Cement and Concrete Research, 98: 10-23.
Fernandez, R., Ruiz, A.I. and Cuevas, J., 2016. Formation of CASH phases from the interaction between concrete or cement and bentonite. Clay Minerals, 51(2): 223-235.
Giaccio, G., Zerbino, R., Ponce, J.M. and Batic, O.R., 2008. Mechanical behavior of concretes damaged by alkali-silica reaction. Cement and Concrete Research, 38(7): 993-1004.
Grattan-Bellew, P.E. and Mitchell, L.D., 2006. Quantitative petrographic analysis of concrete-the damage rating index (DRI) method, a review, In Proc. Marc-André Bérubé symposium on AAR in concrete, CANMET/ACI Advances in concrete technology seminar, Montréal, Canada, 321-334.
Grattan-Bellew, PE., 2012. Petrographic methods for distinguishing between alkali-silica, alkalicarbonate reactions and other mechanisms of concrete deterioration. Proceedings of the 14th International Conference on Alkali Aggregate Reaction, Austin, USA: 10 pp.
Grattan-Bellew, PE., Danay, A., 1992. Comparison of laboratory and field evaluation of AAR in large dams. Proc. of the International Conference on Concrete AAR in Hydroelectric Plants and Dams, Canadian Electrical Association & Canadian National Committee of the Int. Commission on Large Dams.
Grattan-Bellew,PE, 1995. Laboratory evaluation of alkali-silica reaction in concrete from Saunders generating station. ACI Mater J 92 (2):126–34.
Harvey, H., Li, J., Asselanis, J., Zhou, J., Guada, I., Kannekanti, V., Wu, R., 2017. Results from Visual Inspection and Laboratory Testing for ASR in Existing Concrete Cores from Bridges and Pavements in California, University of California, Pavement Research Center Department of Civil and Environmental Engineering, 57 p.
Jalali, L., Zarei, M., Gutiérrez, F., 2019. Salinization of reservoirs in regions with exposed evaporites. The unique case of Upper Gotvand Dam, Iran, Water Research, doi: https://doi.org/10.1016/j.watres.2019.04.015.
Jenni, A., Mäder U., Lerouge C., Gaboreau S., Schwyn B., 2014. In situ interaction between different concretes and Opalinus Clay. Physics and Chemistry of the Earth, Parts A/B/C, 70–71, 71–83.
Lothenbach, B., Bernard, E. and Mäder, U., 2017. Zeolite formation in the presence of cement hydrates and albite. Physics and Chemistry of the Earth, Parts A/B/C, 99, pp.77-94.
Mythili, D., Johnson, C., 2019. Alkali Aggregate reaction in Dam Structures–a Review. International Research Journal of Multidisciplinary Technovation, 1(6): 220-224.
Ohtsu, M. and Watanabe, H., 2001. Quantitative damage estimation of concrete by acoustic emission. Construction and Building Materials, 15(5-6): 217-224.
Rhoades, J.D., Kandiah, A., Mashali, A.M., 1992. The use of saline waters for crop production. FAO Irrigation and Drainage Paper No. 48, Rome, 133 pp.
Rivard, P., Ballivy G., 2005. Assessment of the expansion related to alkali-silica reaction by the Damage Rating Index method, Constr Build Mater 19(2): 83–90.
Rivard, P., Fournier B, Ballivy G., 2002. The damage rating index method for ASR affected concrete: a critical review of petrographic features of deterioration and evaluation criteria, Cement Concrete Aggr 24(2): 80–90.
Rivard, P., Saint-Pierre F, 2009. Assessing alkali-silica reaction damage to concrete with non-destructive methods: From the lab to the field, Construction and Building Materials 23: 902-909.
Rivard, P., Fournier, B. and Ballivy, G., 2002. The damage rating index method for ASR affected concrete-a critical review of petrographic features of deterioration and evaluation criteria. Cement, Concrete and Aggregates, 24(2): 1-11.
Sanchez, L., 2014. Contribution to the assessment of damage in aging concrete infrastructures affected by alkali-aggregate reaction (Doctoral dissertation, Université Laval).
Sanchez, L.F.M., Drimalas, T., Fournier, B., Mitchell, D., Bastien, J., 2018. Comprehensive evaluation of damage in concrete regarding different distress mechanisms, Cem. Concr. Res. 107: 284–303.
Sanchez, L.F.M., Fournier, B., Jolin, M. and Duchesne, J., 2015. Reliable quantification of AAR damage through assessment of the Damage Rating Index (DRI), Cement and Concrete Research, 67: 74-92.
Sanchez, L.F.M., Fournier, B., Jolin, M., Bastien, J., Mitchell, D., 2017. Overall assessment of alkali-aggregate reaction (AAR) in concretes presenting different strengths and incorporating a wide range of reactive aggregate types and natures, Cem. Concr. Res. 93: 17–31.
Sanchez, L.F.M., Fournier, B., Mitchell, D., Bastien, J., 2020. Condition assessment of an ASR-affected overpass after nearly 50 years in service, Construction and Building Materials 236: 117554. https://doi.org/10.1016/j.conbuildmat.2019.117554.
Shrimer F., 2000. Application and use of damage rating index in assessment of AAR affected concrete-selected case studies. In: Proceedings of the 11th international conference on AAR in concrete, Quebec City (Canada): 899–908.
Sims, I., Poole, A.B., 2017. Alkali-Aggregate Reaction in Concrete: A World Review. CRC Press.
Swamy, R.N., Al-Asali, M. M., 1988. Engineering properties of concrete affected by alkali-silica reaction, ACI Materials Journal 85.5: 367-374.
Thomas, M.D.A., Fournier, B., Folliard, K.J. and Resendez, B., 2012. Alkali-Silica Reactivity Surveying and Tracking Guidelines, July, 32 p.
Thomas, M.D., Fournier, B., Folliard, K.J., 2013. Alkali-aggregate reactivity (AAR) facts book (No. FHWA-HIF-13-019), United States, Federal Highway Administration, Office of Pavement Technology.
Van Dam, T.J., Sutter, L.L., Smith, K.D., Wade, M.J., Peterson, K.R., 2002. Guidelines for Detection, Analysis, and Treatment of Materials-Related Distress in Concrete Pavements -Volume 1: Final Report. FHWA-RD-01-163. Federal Highway Administration, McLean, VA.
Villeneuve, V., Fournier, B., 2012. Determination of the damage in concrete affected by ASR - the damage rating index (DRI), 14th ICAAR-International Conference on Alkali-Aggregate Reaction in Concrete, May 20–25th, electronic, Austin (Texas).
Zhou, Li, H., Guada, J., Wu, I., Kannekanti, R., Asselanis, J., 2017. Results from Visual Inspection and Laboratory Testing for ASR in Existing Concrete Cores from Bridges and Pavements in California (No. CAS15-2702). University of California (System). Pavement Research Center.