تاثیر شدت بخشی با هیدروکسید سدیم بر جامدسازی بنتونیت آلوده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه عمران، دانشکده مهندسی، دانشگاه بوعلی سینا، عضو هیئت علمی وابسته دانشکده عمران، پردیس دانشکده های فنی، دانشگاه تهران

2 گروه عمران، دانشکده مهندسی، مجتمع آموزش عالی اسفراین

چکیده

تثبیت/جامدسازی پایه سیمانی روشی متداول برای نگهداری فلزات سنگین در خاک‌های آلوده است. تأثیر یون فلزی در تأخیر هیدراتاسیون سیمان، کارایی این روش را با چالش مواجه کرده‌است. استفاده از NaOH باعث رسوب بخشی از آلاینده فلز سنگین شده و از تأثیر منفی یون فلزی بر گیرش سیمان کاسته می‌شود. این فرایند شدت‌بخشی نامیده می‌شود. هدف این تحقیق تعیین تأثیر شدت‌بخشی بر جامدسازی خاک آلوده در شرایط pH ‌های قلیائی و اسیدی شدید است.
نمونه‌های بنتونیت آلوده به سرب، در دو حالت شدت‌بخشی شده با NaOH و بدون شدت‌بخشی، با استفاده از سیمان به میزان 10 الی 50% درصد وزنی خاک، جامدسازی شده‌اند. شرایط قلیایی و اسیدی شدید با آزمایش‌های تعادل آبشویی و آبشویی پیشرونده در نمونه‌های جامدسازی شده شبیه‌سازی شده‌است. نتایج نشان داده‌است که در شرایط اسیدی و قلیائی شدید، شدت‌بخشی با NaOH، موجب کاهش مقادیر Pb آبشویی شده از نمونه‌ها شده‌است. در شرایط قلیائی شدید با شدت‌بخشی بنتونیت آلوده در نمونه‌های S/S شده، آبشویی یون Pb تا 96% کاهش یافته است. از سوی دیگر، در نمونه‌های آلوده به غلظت‌های زیاد سرب، شدت‌بخشی با NaOH سبب افزایش میزان تشکیل C-S-H شده‌است. با استفاده از راهکار شدت‌بخشی در شرایط قلیائی و اسیدی شدید می‌توان مقادیر سیمان کمتری برای جامدسازی استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Impact of Enhancement by NaOH on Solidification/Stabilization of Contaminated Bentonite

نویسندگان [English]

  • Vahid Reza Ouhadi 1
  • Morteza Deiranlou 2
1 Civil Eng. Department,, Faculty of Eng., Bu Ali Sina University, and Adjunct Prof., School of Civil Eng., University of Tehran.
2 Civil Eng. Department, Faculty of Eng., Esfarayen University
چکیده [English]

Cement-based solidification/stabilization is one of the common methods for increasing the stability of heavy metals in contaminated soils. However, the presence of some of the heavy metals such as lead ions causes a delay and prevention in cement hydration which makes this method as an inapplicable. Enhancement of contaminated clayey soils by NaOH can remove the problems associated with cement hydration delay in presence of heavy metal ions. The main objective of this paper is to determine the impact of enhancement on solidification/stabilization of contaminated soils in extreme acidic and alkaline environment. To achieve the above mentioned objective, samples of contaminated bentonite by 50 and 100 cmol/kg-soil of lead nitrate at two different conditions of enhancement by NaOH and without enhancement were solidified/stabilized by 10 and 50 percentages of cement. The extreme acidic and alkaline conditions simulated by performing of equilibrium soil washing, endorsed TCLP test in solidified/stabilized cured samples. In addition, series of XRD experiments were performed to address the rate and quantity of CSH formation. The achieved results indicate that at extreme alkaline conditions the enhancement of contaminated bentonite has decreased the leach-ability of lead ions around 96%. With a decrease in pH of samples to the quantities less than 5, the use of enhanced samples has reduced the quantity of leachate in enhanced samples in comparison to unenhanced samples around 90%. This is attributed to the contaminant retention by clay fraction of bentonite and contaminant solidification by CSH gels.

کلیدواژه‌ها [English]

  • Cement
  • Solidification/Stabilization
  • Enhancement
  • Bentonite
  • Heavy Metal Contaminant
Ahn, T.H., Shim, K.B., So, K.H., and Ryou, J.S., 2014. Influence of lead and chromium ions as toxic heavy metals between AFt and AFm phases based on C3A and C4A3S. Jouranl of Ceramic Processing Research, 15: 539–544.
 ASTM, American Society for Testing and Materials, 2016. ASTM standard D4972-13, Standard test method for pH of soils. West Conshohocken, PA.
ASTM, American Society for Testing and Materials, 2016. ASTM standard D3282-15, Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes. West Conshohocken, PA.
ASTM, American Society for Testing and Materials, 2016. ASTM standard D4318-10, Standard test method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA.
BSI BS EN 12457: Part 2, 2002. Characterisation of waste. Leaching. compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). British Standards Institution, London.
Bakhshi, N., Sarrafi, A., and Ramezanianpour, A.A., 2019. Immobilization of hexavalent chromium in cement mortar: leaching properties and microstructures. Environ. Sci. Pollut. Res., 26: 20829–20838.
Cappuyns, V., and Swennen, R., 2008. The application of pHstat leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials. Journal of Hazardous Materials, 158: 185–195.
Chen, Q.Y., Hills, C.D., Tyrer, M., Slipper, I., Shen, H.G., and Brough, A., 2007. Characterization of products of Tricalcium silicate hydration in the presence of heavy metals. Journal of Hazardous Materials, 147: 817–825.
Chen, Q., Tyrer, M., Hills, C., Yang, X., and Carey, P., 2009. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review. Waste Management 29: 390-403.
Chiu, A.C.F., Akesseh, R., Moumouni, I.M., and Xiao, Y., 2019. Laboratory assessment of rice husk ash (RHA) in the solidification/stabilization of heavy metal contaminated slurry. Journal of Hazardous Materials, 371: 62-71.
Contessia, S., Calgaro, L., Dalconi, M.C., Bonetto, A., Bellotto, M.P., Ferrari, G., Marcomini, A., and Artioli, G., 2020. Stabilization of lead contaminated soil with traditional and alternative binders. Journal of Hazardous Materials, 382: 120990.
Dermatas, D., and Meng, X., 2003. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70: 377–394.
Eltantawy, I.N., and Arnold, P.W., 1973. Reappraisal of ethylene glycol mono-ethyl ether, (EGME) method for surface area estimation of clays. Soil Science, 24: 232-238.
Gollmann, M.A.C., da Silva, M.M., Masuero, A.B., and dos Santos, J.H.Z., 2010. Stabilization and solidification of Pb in cement matrices. Journal of Hazardous Materials, 179: 507–514.
 Hemstad, P., Machner, A., and Weerdt, K.D., 2020. The effect of artificial leaching with HCl on chloride binding in ordinary Portland cement paste. Cement and Concrete Research, 130: 105976.
 Intrakamhaeng, V., Clavier, K.A., and Townsend, T.G., 2020. Hazardous waste characterization implications of updating the toxicity characteristic list. Journal of Hazardous Materials, 385: 121171.
Kang D., Son, J., Yoo, Y., Park, S., Huh, S., and Park, J., 2020. Heavy-metal reduction and solidification in municipal solid waste incineration (MSWI) fly ash using water, NaOH, KOH, and NH4OH in combination with CO2 uptake procedure. Chem. Eng. J. 380.
Kunther, W., Lothenbach, B., and Skibsted, J., 2015. Influence of the Ca/Si ratio of the C–S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cement and Concrete Research, 69: 37–49.
Lee, D., Swarbrick, G., and Waite, T.D., 2005. Effect of calcite on lead-rich cementitious solid waste forms. Cement and Concrete Research, 35: 1027–1037.
Li, Y., Min, X., Ke, Y., Fei, J., Liu, D., and Tang, C., 2019. Immobilization potential and immobilization mechanism of arsenic in cemented paste backfill. Mineral Engineering, 138: 101–107.
Li, X.D., Poona, C.S., Sun, H., Lo, I.M.C., Kirk, D.W., 2001. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. Journal of Hazardous Materials, A82: 215–230.
Lin, S.L., Cross, W.H., Chian, E.S.K., Lai, J.S., Giabbai, M., and Hung, C.H., 1996. Stabilization and solidification of lead in contaminated soils. Journal of Hazardous Materials, 48(1–3): 95–110.
Mollah, M.Y.A., Vempati, R.K., Lin, T.-C., and Cocke, D.L. 1995. The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems. Waste Management, 15: 137–148.
Moore, D.M., and Reynolds, R.C., 1989. X-ray Diffraction and Identification and Analysis of Clay Minerals. Oxford University Press, New York.
Mota, B., Matschei, T., Scrivener, K., 2018. Impact of NaOH and Na2SO4 on the kinetics and microstructural development of white cement hydration. Cement and Concrete Research, 108: 172–185.
Nikolić, V., Komljenović, M., Džunuzović, N., and Miladinović, Z., 2018. The influence of Pb addition on the properties of fly ash-based geopolymers. Journal of Hazardous Materials, 350: 98-107.
Niu, M., Li, G., Wang, Y., Li, Q., Han, L., and Song, Z., 2018. Comparative study of im- mobilization and mechanical properties of sulfoaluminate cement and ordinary Portland cement with different heavy metals. Construction and Building Materials, 193: 332–343.
Ouhadi, V.R., Yong, R.N. and Diranlou, M., 2021. Enhancement of stabilization/solidification cement based process with NaOH according to Pb concentration in bentonite. Journal of Hazardous Materials, 123969.
Ouhadi V.R., Amiri M., 2014. Interaction of nano-clays and Cu contaminant in geo-environmental projects, Journal of Environmental Science and Technology, 16: 75-87.
Ouhadi V.R., Yong R.N., Rafiee F., Goodarzi, A.R., 2011. Impact of carbonate and heavy metals on micro-structural variations of clayey soils, Applied Clay Science, 53: 228-234.
Ouhadi, V.R., and Deiranlou, M., 2017. Development and Validation of the Modified Barium Chloride Method for CEC Measurement and Determination of Accurate Exchangeable Calcium Cation Concentration in Carbonated Clayey Soils. Modares Civil Engineering journal, 17(3): 21-34. (In Persian)
Taylor, P., 1987. Solubility and stability of inorganic carbonates: An approach to the selection of a waste from for carbon-14. Atomic Energy of Canada Limited, Pinawa, Manitoba.
US-EPA, U.S. Environmental Protection Agency, 1992. Stabilization/ Solidification of CERCLA and RCRA wastes: physical tests, chemical testing procedures, technology screening, and field activities. Center for Environmental Research Information: Risk Reduction Engineering Laboratory, Office of Research and Development, US Environmental Protection Agency.
US-EPA, U.S. Environmental Protection Agency, 2008. Process design manual, land application of municipal sludge. Municipal Environmental Research Laboratory, EPA-625/ 1-83-016.
Van der Sloot, H.A., Comans, R.N.J., and Hjelmar, O., 1996. Similarities in the leaching behaviour of trace contaminants from waste, stabilized waste, construction materials and soils. Science of Total Environment, 178: 111–126.
Wang, L., Cho, D.W., Tsang, D.C.W., Cao, X., Hou, D., Shen, Z., Alessi, D.S., Ok, Y.S., and Poon, C.S., 2019. Green remediation of As and Pb contaminated soil using cement- free clay-based stabilization/solidification. Environment International, 126: 336–345.
Wang, Y.S., Dai, J.G., Wang, L., Tsang, D.C.W., and Poon, C.S., 2018. “Influence of lead on stabilization/ solidification by ordinary Portland cement and magnesium phosphate cement”. Chemosphere, 190: 90–96.
Wu, H.L., Jin, F., Bo, Y.L., Du, Y.J., and Zheng, J.X., 2018. Leaching and microstructural properties of lead contaminated kaolin stabilized by GGBS-MgO in semi-dynamic leaching tests. Construction and Building Materials, 172: 626–634.
Yong, R.N., Galvez-Cloutier, R., and Phadungchewit, Y., 1993. Selective sequential extraction analysis of heavy-metal retention in soil. Can. Geotech. J., 30: 834-847.
Yong, R.N., and Ouhadi, V.R., 2007. Experimental study on instability of bases on natural and lime/cement-stabilized clayey soils. Applied Clay Science, 35: 238–249.
Zhang, M., Yang, C., Zhao, M., Yu, L., Yang, K., Zhu, X., and Jiang, X., 2018. Immobilization of Cr(VI) by hydrated Portland cement pastes with and without calcium sulfate. J Journal of Hazardous Materials, 342: 242–251.