کاربرد نگار صوتی DSI برای تعیین پارامترهای ژئومکانیکی ناهمسانگردی و جهت‌یابی تنش برجا در مخزن کربناته: مطالعه موردی در یکی از میادین هیدروکربنی جنوب غربی ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد. گروه اکتشاف نفت. دانشکده مهندسی نفت. سمنان. ایران

2 استادیار گروه آموزشی اکتشاف نفت، دانشکده مهندسی نفت، دانشگاه سمنان، سمنان

3 گروه آموزشی و پژوهشی فیزیک زمین، دانشگاه تهران، تهران، ایران

چکیده

امروزه اندازه‌گیری صوتی برشی دو قطبی بطور گسترده ای در صنعت نفت مورد استفاده قرار می‌گیرد و داده‌های ارزشمندی را برای تفسیر لرزه‌ای، ارزیابی سازندی و کاربردهای مکانیکی سنگ ارائه می‌دهد. داده‌ های مورد استفاده از میدان سفیدزاخور در پهنه فارس گرفته شده است. در این مطالعه، کاربردهای مختلف پردازش مدهای لاگ صوتی برشی دو قطبی و لاگ تصویری به عنوان مکمل جهت ارزیابی ژئومکانیکی مورد بررسی قرار گرفت. انواع ناهمسانگردی‌های حاصل از لاگ DSI محاسبه و با دیگر پدیده‌های ساختاری، آبشویی و لیتولوژی مقایسه گردید. برای نیل به این هدف ابتدا موج برشی به دو مولفه سریع و کند تفکیک و سپس بر مبنای اختلاف انرژی که دارند ناهمسانگردی مخزن تعیین شد. نتایج نشان داد که در اعماق پایین چاه حداقل انرژی در حالت کمینه و نگار حداکثر انرژی مقادیر بالایی دارد. مناطقی از چاه که حالت ریزشی هستند امواج‌های عبوری پیک شدیدتری دارند که این باعث شده ناهمسانگردی در زون‌های شکستگی و ریختگی‌های دیواره افزایش یابد. فاکتورهای موثر بر بازتاب امواج استونلی و حضور ساختارهای جناغی نشانگر آن بود که ریختگی‌های دیواره چاه مهم ترین عامل تاثیرگذار برای ظهور آنهاست. با ارزیابی نتایج نگارهای صوتی و تصویری در زمینه تنش‌های برجا حداکثر جهت بیشینه تنش در امتداد NE-SW10 تعیین گردید. همچنین دو جهت بیشینه تنش NE-SW45 و SE-NW45 برای سازند مورد مطالعه مشاهده شد که با بیشینه تنش در زاگرس مطابقت دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of DSI acoustic log to determine the geomechanical parameters of anisotropy and in situ stress orientation in carbonate reservoirs: a case study in one of the hydrocarbon fields of south-western Iran

نویسندگان [English]

  • farshid roomiani 1
  • Mohammad Hossein Saberi 2
  • Mohammad Ali Riahi 3
1 MA. Department of Petroleum Exploration. Faculty of Petroleum Engineering. semnan. iran
2 Assistant Professor Of Department of Petroleum Exploration @ Faculty of Petroleum Engineering
3 Department of Earth Physics Research and Development, tehran University, tehran, iran
چکیده [English]

Today, dipole shear sonic imager measurement is widely used in the oil industry and provides valuable data for seismic interpretation, structural evaluation, and mechanical applications of rock. The data used in this research are taken from SefidZakhour in Fars area. In this study, different applications of shear sonic imager processing modes and image log as a complement, was examined for geomechanical evaluation. To achieve the goal, the shear wave was first divided into two components, fast and slow and then the reservoir anisotropy was determined based on the energy difference. The results showed that at the depth bottom of the well, the minimum energy at minimum and the maximum energy at large. The areas of the well that are falling have more intense peak waves. Factors affecting the reflection of stoneley waves and the presence of Chevron pattern indicated that well wall falling are the most important factor influencing. By evaluating the results DSI and FMI in the field of in situ stresses, the maximum direction of maximum stress along NE-SW10 was determined. Also, the two maximum stress NE-SW45 and SE-NW45 were in accordance with the maximum stress in Zagros.

کلیدواژه‌ها [English]

  • dipole shear sonic imager (DSI)
  • anisotropy
  • stoneley waves
  • Chevron pattern
  • maximum stress
مسلمان نژاد، ح، 1384، ارزیابی تراوایی با استفاده از امواج استونلی حاصل از ابزار DSI برای یکی از مخازن کربناته جنوب غرب ایران. پایان نامه کارشناسی ارشد دانشگاه تهران، 1-98 ص.
نجفی، م،. یساقی، ع،. ورجس، ج،. بحرودی، ع،. شرکتی، ش.، 1393، تحلیل ساختاری سه بعدی از تاقدیس سفیدزاخور در پهنه فارس، به منظور تعیین هندسه افق مخزن گازی پرموتریاس. مجله زمین شناسی کاربردی پیشرفته، (10)، 10-18 ص.
سپهری، ا.،. حیدری، ا.، معتمدی، ح.، عبادتی، ن.، 1395، تحلیل شکستگی سازندهای هیدروکربوری میدان سفیدزاخور (جنوب فارس) و تاثیر آن در افزایش پتانسیل مخزنی. کنفرانس بین المللی نوآوری در علوم و تکنولوژی، بارسلون-اسپانیا، 1-25 ص.
 
 
Ameen, Mohammed S. 2003, Fracture and In-Situ Stress Characterization of Hydrocarbon Reservoirs: Definitions and Introduction. Geological Society Special Publication, 209, 1–6.
Aquila, F, Barajas, j, Mesa, H, Herrera, R, Kessler, C. 2003, Using Cross Dipole Sonic Anistropy Data to Improve Reservoir Understanding in the Southern/Marine Areas of Mexico. In Proceedings - SPE Annual Technical Conference and Exhibition, , 1335–1346.
Bennett, Nicholas N. 2019, 3D Slowness Time Coherence for Sonic Imaging. Geophysics 84(5), 179–189.
Brie, A, F. Pampuri, A. F. Marsala, and O. Meazza. 1995, Shear Sonic Interpretation in Gas-Bearing Sands. In Proceedings - SPE Annual Technical Conference and Exhibition, , 701–710.
Brie, A., Endo, T., Hoyle, D., Codazzi, D., Esmersoy, C., Hsu, K., Denoo, S., Mueller, M.C., Plona, T., Shenoy, R., Sinha, B. 1998. New Directions in Sonic Logging. Oilfield Review: 4, 40–55.
Chabot, L., D. C. Henley, R. J. Brown, and J. C. Bancroft. 2001, Single-Well Imaging Using the Full Waveform of an Acoustic Sonic. In 2001 SEG Annual Meeting, 583-600.
 
De, G.S, Winterstein, D.F, Johnson, S.G, Higgs, W.G, Xiao, H. 1997, Predicting Natural or Induced Fracture Azimuths from Shear-Wave Anisotropy. Proceedings of the Middle East Oil Show, 163–170.
Ezati, M, Soleimani B. 2015, Anisotropy and Maximum I-Situ Stress Determination Using DSI Log.  1 9.
Hornby, B.E, Howie, J.M and Donald W. 1999, Anisotropy Correction for Deviated Well Sonic Logs: Application to Seismic Well Tie. SEG Annual Meeting, 464-471.
Khoshbakht, F., Memarian, H., Mohammadnia, M., 2009. Comparison of Asmari, Pabde hand Gurpi formation’s fractures, derived from image log.  Journal of Petroleum Science and Engineering:  67, 65–74.
Khoshbakht, F., Azizzadeh, M., Memarian, H., Nourozi, G. H., Moallemi, S. A., 2012.  Comparison of electrical image log with core in a fractured carbonate reservoir. Journal of Petroleum Science and Engineering: 86–87, 289– 296.
Lei, Ting & Sinha, Bikash & Sanders, Michael. (2012). Estimation of horizontal stress magnitudes and stress coefficients of velocities using borehole sonic data. Geophysics. 77. 181-. 10.1190/geo2011-0277.1. 1-181.
Liu, H. 2017. Principles and Applications of Well Logging. Springer Principles and Applications of Well Logging, 1-363.
Qobi, L. Atlas, B. and Kuijper, A. 2001, Permeability determination from Stoneley waves in the Ara group carbonates Oman, GeoArabia. 1-18.
Rai, C.S, Hanson, K.A. 1988, Shear-Wave Velocity Anisotropy in Sedimentary Rocks: A Laboratory Study. Geophysics 53(6): 800–806.
Prioul, Romain and Jocker, J. 2010. Identification of elastic anisotropy mechanisms from a joint interpretation of borehole images and sonic logs. 1-15.
 Schlumberger, 2004, DSI Dipole Shear Sonic Imager. slb.com/rc. 1-2.
Saberi, M. H., Rabbani, A. r., 2015, Origin of natural gases in the Permo-Triassic reservoirs of the Coastal Fars and Iranian sector of the Persian Gulf. Journal of Natural Gas Science and Engineering, 26, 558-569.
Shuwen, y. Guizhao, C. Yongmin, z. 1995, The Application of Acoustic Full Waveform Logging in Petroleum Engineering. sociedty of petrolium enginers, 323-33.
Sepehr, M. Cosgrov, J.W. 2004, Structural Framework of the Zagros Fold–Thrust Belt, Iran. Marine and Petroleum Geology 21(7): 829–43.
Serra, O. Serra, L. 2005, Well Logging Data Acquistion and Applications. 1-675.
Wang, Sheng and Tkalčić, Hrvoje. 2021. Shear‐wave Anisotropy in the Earth’s Inner Core. Geophysical Research Letters. 10.1029/2021GL094784. 1-14.
Zakharova, N.V. Goldberg D.S. 2015, Data Report: Analysis of Shear Wave Anisotropy in Upper. Oceanic Crust, ODP/IODP Hole 1256D. 1-12.