کاربرد ماشین بردار پشتیبان در مدل‌سازی فرونشست زمین در بخش‌هایی از دشت علی‌آباد قم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 زمین شناسی مهندسی دانشگاه تهران

2 گروه زمین شناسی مهندسی، دانشگاه تهران

3 دانشگاه قم، گروه عمران

چکیده

با گسترش شهرنشینی، صنعت و کشاورزی، افزایش دما و کاهش بارندگی، نیاز به تامین منابع آب مورد نیاز افزایش یافته است. استخراج بیش‌از حد آب‌های زیرزمینی به منظور تامیین آب مصرفی، باعث کاهش سطح آب زیرزمینی و بروز فرونشست می‌شود. در این مطالعه، به منظور ساخت مدل فرونشست از رویکرد ماشین بردار پشتیبان، استفاده شده است. افت سطح آب زیرزمینی، ضخامت رسوبات آبرفتی، قابلیت انتقال رسوبات آبرفتی و مدول الاستیسیته به عنوان پارامترهای مستقل مدل‌سازی فرونشست با ماشین بردار پشتیبان مورد استفاده قرار گرفته است. نتایج حاصل از پژوهش نشان داده است که مدل ماشین بردار پشتیبان با دقت خوبی توانسته است فرونشست را مدل‌سازی کند. برای صحت‌سنجی عملکرد ماشین بردار پشتیبان، نتایج حاصل از مدل، با مقادیر اندازه‌گیری شده از روش InSAR حاصل از تصاویر ماهواره‌ای دشت علی‌آباد قم ارزیابی شده است. همچنین به منظور بررسی میزان تاثیرگذاری پارامترهای ورودی مدل بر فرونشست، تحلیل حساسیت انجام گرفته است که نتایج به دست آمده نشان می‌دهد وقوع فرونشست به افت سطح آب زیرزمینی در منطقه وابستگی زیادی دارد. در نهایت با استفاده از داده‌های جدید تعمیم‌پذیری مدل مورد بررسی قرار گرفته و نتایج حاکی از توانایی تعمیم‌پذیری مدل ماشین بردار پشتیبان فرونشست می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of support vector machine in modeling land subsidence in parts of Aliabad plain of Qom

نویسندگان [English]

  • Ali M. Rajabi 1
  • yasaman Abolghasemi 2
  • Ali Edalat 3
1 Engineering Geology, university of Tehran
2 Engineering Geology Department, University of Tehran
3 University of Qom
چکیده [English]

Due to the enhancement of urbanization, industry, and agriculture, increasing temperature, and decreasing rainfall, the demand for water supply has increased. Excessive extraction of groundwater for consumption imposes a decline in the groundwater level and the occurrence of subsidence as a consequence. In this study, a support vector machine approach is applied to model the subsidence. Groundwater level drop, the thickness of alluvial sediments, the transmissivity of alluvial sediments, and elasticity modulus have been used as independent parameters of subsidence modeling by a support vector machine. The results indicate that the support vector machine model can model the subsidence with reasonable accuracy. To verify the performance of the support vector machine, the model's results have been evaluated with the measured values of the InSAR method obtained from the satellite images of some parts of Aliabad Plain. In addition, to examine the impact of model input parameters on subsidence, a sensitivity analysis has been conducted, and the results illustrate that the occurrence of subsidence is distinctly dependent on the drop in the underground water level in the region. The generalizability of the model has been investigated by using a new dataset, and the results indicate the generalizability of the subsidence support vector machine model.

کلیدواژه‌ها [English]

  • Land subsidence
  • Groundwater Level Dropdown
  • Machine Learning
  • Support Vector Machine
  • Aliabad plain of Qom
انگورانی، س.، 1389. مدلسازی پویای دشت تهران. پایان‌نامه کارشناسی ارشد، گرایش اکتشاف معدن، دانشکده مهندسی معدن، دانشگاه تهران.
شرکت آب منطقه‌ای استان قم 1396. اطلاعات مربوط به چاه های مشاهده‌ای و بهره‌برداری دشت علی آباد قم (منطقه مطالعاتی 4112). وزارت نیرو ، شرکت مدیریت منابع آب ایران.
Arabameri, A., Saha, S., Roy, J., Tiefenbacher, J. P., Cerda, A., Biggs, T., Pradhan, B., Ngo, P. T. T., Collins, A. L. 2020. A novel ensemble computational intelligence approach for the spatial prediction of land subsidence susceptibility. Science of the Total Environment.
Award, M., and Khanna, R. 2015. Support Vector Regression. Berkeley, CA: Efficient Learning Machines. Apress.
Banerjee, P., Singh, V., Chattopadhayay, K., Chandra, P., and Singh, B. 2011. Artificial neural network model as a potential alternative for groundwater salinity forecasting. Journal of Hydrology, 212-220. https://doi.org/10.1016/j.jhydrol.2010.12.016
Basak, D. Pal, S. and Patranabis, D. C. 2007. Support Vector Regression. Neural Information Processing Letters and Reviews 11(10), 203-224.
Behzadfar, M. a. 2005. Modeling Rainfall Erosivity Factor for Single Showers: A case Study in Khuzestan Province, Iran. The International of Humanities, 41-50.
Blachowski, J. 2016. Application of GIS spatial regression methods in assessment of land subsidence in complicated mining conditions: Case study of the Walbrzych coal mine (SW Poland). Natural Hazard, 84, 997-1014. https://doi.org/10.1007/s11069-016-2470-2
Bui, D. T., Shahabi, H., Shirzadi, A., Chapi, K., Pradhan, B., Chen, W., Khosravi, K., Panahi, M., Bin Ahmad, B., Saro, L. 2018. Land subsidence susceptibility mapping in South Korea using machine learning algorithms. Sensors.
Campbell, C. 2002. Kernel Methods: A Survey of current techniques. Neurocomputing, 48, 63-84.
Corapcioglu, M. Y. 1984. Land subsidence a state-of-the-art review. Fundamentals of Transport Phenomena in Porous Media, 369-444.
Cortes, C., and Vapnik, V. 1995. Support Vector Networks. Machine Learnings, 273-297.
Daliakopoulos, I. N., Coulibaly, P., and Tsanis, I. 2005. Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 229-240.
Dinar, A., Esteban, E., Calvo, E., Herrera, G., Teatini, P., Tomás, R., Yang, L., and Albiac, J. 2018. Land Subsidence: The forgotten enigma of groundwater (Over) extraction. Natural Resources as Assets, California.
Edalat, A., Khodaparast, M. and Rajabi, A. M. 2019. Detecting land subsidence due to groundwater withdrawal in Aliabad plain, Iran, using ESA Sentinel-1 satellite data. Natural Resources Research 29, 1935–1950. https://doi.org/10.1007/s11053-019-09546-w
Galloway, D., Bawden, G., Leake, S., and Honegger, D. 2008. Landslide and land subsidence hazards to pipelines. United States Geological Survey.
Galloway, D. L., and Burbey, T. 2011. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 1459-1486.
Galloway, D., Jones, D., and Ingebritsen, S. 1999. Land Subsidence in the Unites States. United States Geological Survey.
Gholami, R., and Moradzadeh, A. 2012. Support Vector Regression for prediction of gas reservoirs permeability. Journal of Mining and Environment, 2(1), 41-52.
Larson, K. J., Basagaoglu, H., and Marino, M. 2001. Prediction of optimal safe water yield and land subsidence in the Los Banos-Kettleman City area, California, using calibrated numerical simulation model. Journal of Hydrology, 79-102.
Lee, S., Park, I. 2013. Application of decision tree model for ground subsidence hazard mapping near abandoned underground coal mines. Journal of Environmental Management, 127C, 166-176. https://doi.org/10.1016/j.jenvman.2013.04.010.
Lee, S., Park, I., Choi, J.K. 2012. Spatial prediction of ground subsidence susceptibility using, Environmental Management, 49 (2), 347–358. https://doi.org/10.1007/s00267-011-9766-5.
Liu, Z., Zuo, M., Zhao, X., and Xu, H. 2015. An Analytical Approach to Fast Parameter Selection of Gaussian RBF Kernel for Support Vector Machine. Journal of Information Science and Engineering 31, 691-710.
Mehrnoor, S., Robati, M., Kheirkhah Zarkesh, M. M., Farsad, F., and Baikpour, S. 2022. Land Subsidence hazard assessment based on novel hybrid approach: BWM, Weighted Overlay Index (WoI), and Support Vector Machine (SVM). Natural Hazards.
Oh, H.J., Lee, S., 2010. Assessment of ground subsidence using GIS and the weights-of evidence model. Engineering Geology 115 (1), 36–48.
Phi, T. H., and Strokova, L. 2015, Prediction maps of land subsidence cause by groundwater exploitation in Hanoi. Vietnam, Resource-Efficient Technologies, 80-89.
Rafiee, M., Ajalloeian, R., Dehghani, M. et al. 2022. Artificial neural network modeling of the subsidence induced by overexploitation of groundwater in Isfahan-Borkhar Plain, Iran. Bulletin of Engineering Geology and the Environment 81, 170. https://doi.org/10.1007/s10064-022-02646-7
Rafie M, Samimi Namin F. 2015. Prediction of subsidence risk by FMEA using artificial neural network and fuzzy inference system. International Journal of Mining Science and Technology 25(4), 655–663
Rahmati, O., Golkarian, A., Biggs, T., Keesstra, S., Mohammadi, F., and Daliakopoulos, I.N., 2019. Land subsidence hazard modeling: machine learning to identify predictors and the role of human activities. Journal of Environmental Management 236, 466–480. doi.org/10.1016/j.jenvman.2019.02.020.
Rajabi, A. M. 2018. A numerical study on land subsidence due to extensive overexploitation of groundwater in Aliabad plain, Qom-Iran. Natural Hazard.
Sadeghi-Tabas, S., Akbarpour, A., Pourreza-Bilondi, A., and Samadi, S. 2016. Toward reliable calibration of aquifer hydrodynamic parameters: characterizing and optimization of arid groundwater system using swarm intelligence optimization algorithm. Arabian Journal of Geosciences.
Schmid, W., Leak, S. A., Hughes, J. D., and Niswonger, R. 2014. Feedback of land subsidence on movement and conjunctive use of water resources. Environmental Modelling & Software, 253-270.
Taravatrooy, N., Nikoo, M. R., Sadegh, M. P. 2018. A hybrid clustering-fusion methodology for land subsidence estimation. Natural Hazard, 905-926. https://doi.org/10.1007/s11069-018-3431-8
Terzaghi, K. 1925. Principals of soil mechanics, settlement and consolidation of clay. Engineering News-Record, 874-878.
Wang, Y. Q., Wang, Z., and Cheng, W. 2018. A review on land subsidence caused by groundwater withdrawal in Xi'an, China. Bulletin of Engineering Geology and Environment, 1-13.
Wang, W., Xu, Z., Lu, W., and Zhang, X. 2003. Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing 55, 643-663.
Zhou, Y., and Li, W. 2011. A review of regional groundwater flow modeling. Geoscience Frontiers, 205-214.