ارزیابی ویژگیهای مهندسی خاک های مارنی تثبیت شده توسط آهک و نانوکامپوزیت (مطالعه موردی: خاک مارنی منطقه سنقر)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه زمین شناسی دانشگاه یزد

2 کارشناسی فنی شرکت مهندسی چاوش راه بنا

چکیده

وجود خاک‌های مارنی مشکلات متنوعی را در اجرای پروژه‌های مهندسی ایجاد می‌نماید. بنابراین موضوع تثبیت این خاک‌ها با استفاده از افزودنی‌های مختلف به یکی از مهمترین موضوعات پژوهشی حوزه ژئوتکنیک تبدیل شده است. از این رو این پژوهش با هدف بررسی اثر بهبود بخشی آهک و نانوذرات بر روی رفتار مهندسی خاک‌های مارنی اطراف شهر سنقر انجام شده است. بدین صورت که پس از اخذ نمونه‌های خاک مارنی از محل مورد مطالعه، نمونه ها به آزمایشگاه منتقل شده و ویژگی‌های فیزیکی، شیمیایی و مکانیکی آنها قبل و بعد از تثبیت توسط افزودنی آهک و نانوکامپوزیت مورد بررسی قرار گرفته است. براساس نتایج بدست آمده، با افزایش درصد وزنی آهک، مقدار شاخص خمیری خاک در اثر واکنش‌های پوزولانی کاهش پیدا کرده است. همچنین با افزایش مقادیر درصد وزنی آهک و مدت زمان عمل-آوری، مدول الاستیسیته و مقاومت تک محوری روند افزایشی نشان داده اند. نتایج نشان داد که با افزایش میزان نانوکامپوزیت تا مقدار 4 درصد بدلیل پر شدن فضای خالی خاک توسط ذرات نانوکامپوزیت، مقاومت فشاری خاک افزایش یافته است و با عبور از این مقدار و در نتیجه‌ی فلوکوله شدن ذرات، روند کاهشی مشاهده می‌شود. در نهایت مشخص گردید که اضافه کردن آهک اثربخشی بیشتری در مقایسه با نانوکامپوزیت در بهبود ویژگی‌های مقاومتی داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of engineering characteristics of marly soils treated by lime and nanocomposite (case study: marly soil of Sonqor region)

نویسندگان [English]

  • Mehdi Torabi-Kaveh 1
  • Ali Heidari 2
1 Geology-Faculty of Science-Yazd Univrsity-Yazd-Iran
2 Expert of Chavosh Rah Bana Company
چکیده [English]

The presence of marly soils causes various problems in the implementation of engineering projects. Therefore, treatment of these soils, using various types of additives, has become to one of the most important research topics in the field of geotechnics. Hence, this study has been done with aim of investigating the effect of treatment by lime and nanoparticle on the engineering behavior of marly soils located around the Sonqor city. After taking marly soil samples from the study area, the samples were transferred to the laboratory and their physical, chemical and mechanical properties have been investigated before and after stabilization by the lime and nanocomposite additives. Based on the obtained results, the soil plasticity index decreases by increasing lime percentage due to pozzolanic reactions. Also, with increasing lime percentage and curing time, the modulus of elasticity and the uniaxial compressive strength have been increased. The results showed that with increasing the percentage of nanocomposite up to 4%, due to the filling of the soil's pore space by nanocomposite particles, the compressive strength of the soil increases, and after that a decreasing trend is observed as a result of the flocculation of the particles. Finally, it was found that addition of lime has more efficiency in improving the strength properties than the nanocomposite.

کلیدواژه‌ها [English]

  • Marly soil
  • Stabilization by lime and nanoparticles
  • Physical
  • chemical and mechanical properties

اوحدی، و.، امیری، م.، زنگنه، م.، 1395. ارزیابی ریزساختاری میزان مصرف آهک و پیشرفت واکنش­های پوزولانی خاک واگرای تثبیت شده با آهک. نشریه علمی – پژوهشی مهندسی عمران (فنی و مهندسی مدرس)، جلد 16، شماره 1، صفحه 11-22.

محمدزاده ثانی، ا.،  عربانی، م.،  خداپرست حقی، ا.،  جمشیدی چناری، ر.، 1389. تأثیر نانو رس بر روی خصوصیات ژئوتکنیکی ماسه های رس دار. چهارمین همایش بین المللی مهندسی ژئوتکنیک و مکانیک خاک ایران، تهران.

Al-Amoudi, OSB., Khan, K., Al-Kahtani, NS., 2010. Stabilization of a Saudi calcareous marl soil. Construction and Building Materials, 24(10): 1848-1854.

ASTM D 2006. Standard test method for unconfined compressive strength of cohesive soil. American Society for Testing and Materials West Conshohocken, Pa.

ASTM D- 2011. Standard test method for direct shear test of soils under consolidated drained conditions. D3080/D3080M.

ASTM D2216-10 2010. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, ASTM International, West Conshohocken, PA, www.astm.org.

ASTM D2487-17 2017. Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), ASTM International, West Conshohocken, PA, www.astm.org.

ASTM D4318-17e1 2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken, PA, www.astm.org.

ASTM D4373-14 2014. Standard Test Method for Rapid Determination of Carbonate Content of Soils, ASTM International, West Conshohocken, PA, www.astm.org.

ASTM D638-14, Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA, 2014, www.astm.org

ASTM D698-12e2, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken, PA, 2012, www.astm.org

Basha, E., Hashim, R., Mahmud, H., Muntohar, A., 2005. Stabilization of residual soil with rice husk ash and cement. Construction and building materials, 19(6): 448-453.

Calbi-Floody, M., Theng, B.K.G., Reyes, P., Mora, ML., 2009. Natural nanoclays: applications and future trends-a Chilean perspective. Clay Miner, 44(2): 161-176.

Changizi, F., Haddad, A., 2017. Effect of nanocomposite on the strength parameters of soil. KSCE Journal of Civil Engineering, 21:676-686.

Chen, L., Lin, D-F., 2009. Stabilization treatment of soft subgrade soil by sewage sludge ash and cement. Journal of Hazardous Materials, 162(1): 321-327.

Curtin, D., Syers, JK., 2001. Lime-induced changes in indices of soil phosphate availability. Soil Science Society of America Journal, 65(1): 147-152.

Dang, LC., Fatahi, B., Khabbaz, H., 2016. Behaviour of expansive soils stabilized with hydrated lime and bagasse fibres. Procedia engineering, 143: 658-665.

Deer, WA., Howie, RA., Zussman, J., 1997. Rock-forming Minerals: Double-Chain Silicates, Volume 2B. Geological Society of London.

Garzón, E., Cano, M., OKelly, BC., Sánchez-Soto, PJ., 2016. Effect of lime on stabilization of phyllite clays. Applied Clay Science, 123: 329-334.

Harichane, K., Ghrici, M., Kenai, S., 2018. Stabilization of Algerian clayey soils with natural Pozzolana and lime. Periodica Polytechnica Civil Engineering, 62(1): 1-10.

Hausmann, MR., 1990. Engineering principles of ground modification.

Hossain, K., Mol, L., 2011. Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes. Construction and Building Materials, 25(8): 3495-3501.

Kermani, MS., Nikudel, M., Uromei, A., 2018. The Influence of Nano Bentonite on Geotechnical Characteristics of Sand. Journal of Iranian Association of Engineering Geology, 11(1): 37-47.

Khalid, N., Mukri, M., Kamarudin, F., Ghani, AHA., Arshad, MF., Sidek, N., Bilong, B., 2015. Effect of nanoclay in soft soil stabilization. In InCIEC 2014 (pp. 905-914). Springer, Singapore.

Lin, D-F., Lin, K-L., Hung, M-J., Luo, H-L., 2007. Sludge ash/hydrated lime on the geotechnical properties of soft soil. Journal of hazardous materials, 145(1-2): 58-64.

Majeed, ZH., Taha, MR., Jawad, IT., 2014. Stabilization of soft soil using nanomaterials. Research Journal of Applied Sciences, Engineering and Technology, 8(4): 503-509.

Modarres, A., Nosoudy, YM., 2015. Clay stabilization using coal waste and lime—Technical and environmental impacts. Applied clay science, 116: 281-288.

Ouhadi, V., Bakhshalipour, H., 2010. Impact of nano clays on the behavior properties of collapsible soils. Proc of 9th International Congress on Advanced in Civil Engineering, 27-30

Rogers, CDF., Glendinning, S., Roff, TEJ., Consoli, NC., Thome, A., 2001. Lime modification of clay soils for construction expediency. Proceedings of the Institution of Civil Engineers- Geotechnical Engineering, 149(3): 201-202.

Roshan Bakht, K., Khamehchian, M., Sajjedi, Rh., Nikudel, M., 2015. Biological improvement of sandy soil by microbial induced carbonate precipitation and the affecting factors. Journal of Iranian Association of Engineering Geology, 8(1-2): 1-12.

Seco, A., Ramírez, F., Miqueleiz, L., García, B., Prieto, E., 2011. The use of non-conventional additives in Marls stabilization. Applied Clay Science, 51(4): 419-423.

Shi, JH., Zhao, YS., Hong, M., 2003. A study on modification of clayey soil as landfill liner material. Journal of Jilin University (Earth Science Edition), 33(3): 355-359.

Sol-Sánchez, M., Castro, J., Ureña, C., Azañón, J., 2016. Stabilisation of clayey and marly soils using industrial wastes: pH and laser granulometry indicators. Engineering Geology, 200: 10-17.

Taha, MR., Taha, OME., 2012. Influence of nano-material on the expansive and shrinkage soil behavior. Journal of Nanoparticle Research, 14(10): 1190.

Tucker, ME., 2009. Sedimentary petrology: an introduction to the origin of sedimentary rocks. John Wiley & Sons.

Yi, Y., Gu, L., Liu, S., 2015. Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag. Applied Clay Science, 103: 71-76.