بررسی واگرایی خاکهای ریزدانه منابع قرضه هسته سد خاکی حاجیلر ورزقان و ارتباط آن با سنگ مادر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه علوم زمین، دانشگاه تبریز

2 عضو هیات علمی گروه علوم زمین/ دانشگاه تبریز

چکیده

سد خاکی حاجیلر در بخش خاروانا از توابع شهرستان ورزقان در حال احداث است. هسته این سد خاکی با ارتفاع 95 متر از نوع رسی می‌باشد. برای تامین مصالح هسته این سد تعداد 11 منبع قرضه رسی بررسی شده که برخی از آنها به دلیل بالا بودن خاصیت واگرایی خاک مورد استفاده واقع نشده‌ است. بیشتر خاک‌های ریزدانه منطقه دارای خاصیت واگرایی بالایی می‌باشند. برونزد سازندهای تبخیری در منطقه پروژه زیاد بوده و شواهد صحرایی مبنی بر واگرایی خاکها همچون فرسایش شیاری، فرسایش کوزه‌ای، ایجاد گودال و تونل در خاک و گل آلود شدن آب‌ها پس از بارندگی دیده می‌شود. در این تحقیق به بررسی مشخصات خاک 5 منبع قرضه هسته رسی سد با تأکید بر سنگ مادر خاک‌ها، کانی شناسی و نتایج آزمایشات واگرایی پرداخته شده است. بدین منظور ضمن بررسی‌های محلی همراه با تعیین سنگ مادر مرتبط با منابع قرضه، نمونه‌هایی از منابع قرضه برداشت شده و پتانسیل واگرایی آن‌ها در آزمایشگاه با آزمایشات کرامب، هیدرومتری دو گانه، پین هول و تجزیه شیمیایی مورد بررسی قرار گرفته است. نتایج بررسی‌ها نشان می‌دهد که خاک‌های رسی با سنگ منشأ رسوبات تبخیری نئوژن، دارای پتانسیل واگرایی بالایی بوده و بر اساس نتایج آزمایشات هیدرومتری دوگانه، درصد واگرایی خاک‌ها بین 45 تا 68 درصد و بر اساس نتایج آزمایشات پین هول در گروه D1 قرار دارند. خاک‌های ریزدانه اطراف رودخانه حاجیلر (از جمله منبع قرضه نزدیک روستای کلو) که سنگ منشا آذرین دارند، غیرواگر می‌باشند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation on dispersivity potential of clayey soils of Varzagan Hajilar earth dam and its relationship with parent rock

نویسندگان [English]

  • Nazila Dadashzadeh 1
  • Ebrahim Asghari Kaljahi 2
  • Hadiseh Mansouri 1
1 Department of Earth Sciences, University of Tabriz, Iran
2 Associate Prof./University of Tabriz
چکیده [English]

The Hajilar earth dam is under construction near the Kharvana Town of Varzaghan County. The height of this earth dam is 95 meters from foundation level. During dam studies have been identified 11 borrow material sources. As for, the evaporative formations outcrops in the project region and the presence of field evidence such as erosion of the sluice, erosion of the jars, the formation of pit and tunnel in the soil, and the flooding of the water after rainfall, it is necessary to study the potential of the dispersion of fine-grained soils in the area. In this research, the soil characteristics of five borrow sources of the clayey core of dam have been investigated, with emphasis on parent rocks, mineralogy and dispersive tests. For this purpose, field investigation and sampling and determination of parent rock related to borrow material resources, dispersive tests such as Crumb, double hydrometer, Pinhole and chemical analysis were performed on the samples. The results of this study show that clayey soils with the origin of Neogene evaporation deposits in the Leylab plain have a high dispersive potential and are classified according to the results of pinhole tests in group D1. Based on the results of double hydrometer tests, the percentage of dispersion in the Leylab plain is between 45 and 68%. The fine-grained soils around the Hajilar River, which are often the source of igneous rocks, have a low dispersive to non-dispersive.

کلیدواژه‌ها [English]

  • dispersive soils
  • Pinhole Test
  • Hajilar dam
  • Leylab plain
  • Borrow material

اصغری کلجاهی، ا.، 1378، "شناسایی منابع قرضه ریزدانه مناسب از نظر واگرایی بر اساس مطالعات زمین‌شناسی مهندسی"، اولین کنفرانس زمین‌شناسی و محیط زیست ایران، دانشگاه تربیت معلم، 415–424.

درویش زاده، ع.، 1370، "زمین شناسی ایران"، نشر دانش امروز، 901 صفحه.

سازمان زمین‌شناسی کشور، 1376، "نقشه زمین شناسی 100000 : 1 سیه رود".

شرکت مهندسین مشاور بندآب، 1388، "طرح توسعه رودخانه حاجیلر- مطالعات مرحله دوم- گزارش فنی سد و تأسیسات وابسته".

خامه چیان، م.، رحیمی، ح.، سلوکی، ح.، 1379، "بررسی خاک‌های واگرا در ارتباط با شرایط زمین شناسی در استان خوزستان"، فصلنامه علوم زمین، دوره 9، شماره 36، 44-59.

گودرزی، ذ.، 1391، "شناسایی و مطالعه خاک‌های واگرا در استان لرستان"، پایان نامه کارشناسی ارشد، دانشگاه بوعلی سینا، 146 صفحه.

مرندی، م.، حمیدی، ص.، 1394، "اعتبارسنجی آزمایش های واگرایی در خاک های با خواص خمیری و پتانسیل واگرایی کم (مطالعه موردی بخشی از مناطق ایران)"، نشریه مهندسی عمران و محیط زیست، شماره 45، 51-63.

مظفری‌نیا، ع.، قنبری، ع.، اصغری کلجاهی، ا.، 1393، "بررسی استفاده از خصوصیات خمیری در شناسایی خاک‌های واگرا"، دومین کنفرانس ملی مهندسی ژئوتکنیک ایران، کرمانشاه.

نبوی، م. ح.، 1355، "دیباچه‌ای بر زمین شناسی ایران"، سازمان زمین شناسی و اکتشافات معدنی کشور.

ASTM D4221, 2018. Standard Test Method for Dispersive Characteristics of Clay Soil by Double Hydrometer, ASTM International, West Conshohocken.
ASTM D4318, 2017. Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils, ASTM International, West Conshohocken.
ASTM D3282, 2015. Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes, ASTM International, West Conshohocken.
ASTM D4647, 2015. Standard Test Method for Identification and Classification of Dispersive Clay Soils by the Pinhole Test, ASTM International, West Conshohocken.
ASTM D6572, 2013. Standard Test Methods for Determining Dispersive Characteristics of Clayey Soils by the Crumb Test, ASTM International, West Conshohocken.
ASTM D698, 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)), ASTM International, West Conshohocken.

Barkhordari, K., Abbaspour, M., Beygi, M., Nikdel, S., 2014. A Comparison between methods for determining divergence of  soil and proposed a new method based on soil activity number. Electronic Journal of Geotechnical Engineering, 19.

Belarbi, A., Zadjaoui, A., Bekkouche, A., 2013. Dispersive clay: influence of physical and chemical properties on dispersion degree. Electronic Journal of Geotechnical Engineering, 18: 1727-1738.

Bell, F., Maud, R., 1994. Dispersive soils: a review from a South African perspective. Quarterly Journal of Engineering Geology and Hydrogeology, 27: 195-210.

Bhuvaneshwari, S., Soundra, B., Robinson, R., Gandhi, S., 2007. Stabilization and microstructural modification of dispersive clayey soils, Proceedings of the First International Conference on Soil and Rock Engineering, Srilankan Geotechnical Society, Colombo, Sri Lanka, 1-7.

Dixit, M., Gupta, S., 2011. Problems in characterization and identification of dispersive soils-a case study. International Journal of Earth Sciences and Engineering, 4: 143-146.

Fang, Y., Chung, Y., Yu, F., Chen, T., 2001. Properties of soil-cement stabilised with deep mixing method. Proceedings of the Institution of Civil Engineers-Ground Improvement, 5: 69-74.

Flores-Berrones, R., Lopez-Acosta, N.P., 2011. Internal erosion due to water flow through earth dams and earth structures, Soil Erosion Studies. IntechOpen.

Gray, J., Murphy, B., 2002. Parent material and world soil distribution, 17th world congress of soil science. Bangkok, Thailand. Citeseer.

Holtz, R. D., Kovacs, W. D., 1981. An introduction to geotechnical engineering. Prentice-Hall, Englewood Cliffs.

Ingles, O. G. and Metcalf, J. B.,1972. Soil stabilization: principles and practice, 374 P.

McCook, D., McElroy, C., 1991. Soil mechanics note No. 13: Dispersive clays. The soil mechanics labratory at Fort Worth, Texas.

Mitchell, J., 1993. Fundamentals of Soil Behavior. John Wiley and Sons, Inc, New York, 592 P.

Nagy, G., Nagy, L., Kopecskó, K., 2016. Examination of the physico-chemical composition of dispersive soils. Periodica Polytechnica Civil Engineering, 60: 269-279.

Rezaei, M., Ajalloeian, R., Ghafoori, M., 2012. Geotechnical properties of problematic soils emphasis on collapsible cases. International Journal of Geosciences, 3: 105-110.

Sayehvand, S., Dehghani, M., 2004. Identification and management of dispersive soils. Electronic Journal of Geotechnical Engineering: 1-44.

She, D., Fei, Y., Liu, Z., Liu, D., Shao, G., 2014. Soil erosion characteristics of ditch banks during reclamation of a saline/sodic soil in a coastal region of China: field investigation and rainfall simulation. Catena, 121: 176-185.

Sheraed, J., Dunnigan, L.P., Decker, R.S., 1976. Identification and nature of dispersive soils. Journal of Geotechnical and Geoenvironmental Engineering, 287-301.

Sherard, J.L., Decker, R.S., Ryker, N.L., 1972. Piping in earth dams of dispersive clay, Performance of Earth and Earth-Supported Structures. ASCE, 589 P.

Umesh, T., Dinesh, S., Sivapullaiah, P.V., 2011. Characterization of dispersive soils. Materials Sciences and Applications, 2: 629-633.