بررسی مقدار ضریب اصطکاک پسماند سطوح سنگی تحت تماس‌های کوچک و استاندارد و پیشنهاد کاربرد تریبومتر در اندازه‌گیری آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی، دانشکدة فنی و مهندسی

2 گروه مهندسی مکانیک، دانشده فنی و مهندسی، دانشگاه محقق اردبیلی

3 گروه مهندسی برق و کامپیوتر، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی

چکیده

بررسی و تعیین خصوصیات اصطکاکی پسماند سطوح سنگی در طراحی و احداث سازه‌های سنگی در یا بر روی توده‌سنگ اهمیت فراوانی دارد. تریبومترها ابزارهایی هستند که برای اندازه‌گیری ویژگی‌های اصطکاکی انواع سطوح در حال تماس به کار می‌روند. در این تحقیق نتایج تعدادی آزمایش برش مستقیم که بر روی درزه‌های آهکی از جنس مرمریت و تراورتن اجرا شدند مورد تجزیه تحلیل قرار گرفتند. در هریک از این نمونه‌های سنگی، دو سری درزه، یکی درزه‌های کششی با زبری طبیعی در ابعاد استاندارد (بر اساس ISRM) و دیگری درزه‌های صاف و تخت در دامنة ابعاد 1 سانتی‌متر مربع تا 25 سانتی‌متر مربع ایجاد شدند. نتایج به دست آمده از مرحلة پسماند آزمایش‌ها جمع‌آوری شده و مورد بررسی قرار گرفتند. یافته‌ها بیانگر آن است که مقاومت برشی پسماند سطوح سنگی آهکی تحت شرایط تنش و نرخ برش ثابت، تقریباً مستقل از اندازة تماس هستند. بعلاوه تحت شرایط تنش و نرخ برش یکسان در محل‌های تماس بین سطوح سنگی، مقاومت برشی پسماند درزه-های آهکی زبر با ابعاد استاندار تقریباً با ضریب اصطکاک پسماند بدست آمده از سطوح صاف ارّه بر شده از همان سنگ با ابعاد کوچکتر برابر است. در نهایت با تکیه بر یافته‌های تحقیق و نتایج به دست آمده از مطالعات پیشین، پیشنهاد شد تا از تریبومترها در اندازه‌گیری مقاومت برشی پسماند سطوح سنگی تحت تماس‌های نقطه‌ای و جابجایی برشی 5 الی 20 میلیمتر بهره گرفته شود. در نهایت نیز یک طرح مفهومی برای ساخت نوعی تریبومتر مخصوص اندازه‌گیری اصطکاک سطوح سنگی پیشنهاد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation on residual friction coefficient of rock surfaces under small and standard contact sizes and suggestion the application of tribometer to measuring it

نویسندگان [English]

  • Seyedahmad Mehrishal 1
  • Mohammad Vajdi 2
  • Hamid Bahador 3
1 Universuty of Mohaghegh Ardabili, Faculty of Engineering
2 Department of Mechanical Engineering, University of Mohaghegh Ardabili
3 Department of Electronic and computer engineering, University of Mohaghegh ardabili
چکیده [English]

Investigation and determination of residual frictional properties of rock joints is important for designing structures on or within the rock masses. Tribometer is a device to measure frictional properties of various types of contacting surfaces. In this research, several direct shear experiments conducted on two types of artificial limestone joints named Onyx marble and Travertine. Two types of surfaces geometry such as rough tensile joint surfaces with standard dimensions (based on ISRM suggested methods) and grinded planar small surfaces with dimensions ranged from 1 cm2 to 25 cm2 were prepared. Direct shear experiments by constant shearing rate and under different normal stresses conducted in CNL boundary condition. Results obtained from the residual state of the shear were gathered and investigate and it found that the residual friction coefficient of limestone rock joints, under almost similar normal stress and shearing rate conditions, remains approximately constant with differing the contact size of the specimens. In addition, under approximately similar stress concentrations in contact regions, the residual shear behavior of rough surfaces with standard dimensions is very similar to that of small planar ground surfaces in limestone joints. Finally, based on findings in this research and some other past researches, it is proposed to apply tribometers for measuring the residual shear strength of rock joints. In this paper, a conceptual design of a tribometer is proposed to develop for measuring residual frictional properties of a point contacts of rock surfaces during 5 to 20 mm shear displacements.

کلیدواژه‌ها [English]

  • "rock joint shear strength"
  • "stress concentration on roughness"
  • "scale independency of residual shear"
  • "CNL shear"
مهری­شال، س ا،. شریفزاده، م،. شهریار، ک،. 1395. سازوکار اصطکاکی و چسبندگی در مقاومت برشی درزه­ها. رسالة دکتری، گرایش مهندسی مکانیک سنگ، دانشکدة معدن و متالورژی دانشگاه صنعتی امیرکبیر (پلی­تکنیک تهران).
Bowden, F. P., & Tabor, D. 2001. The friction and lubrication of solids (Vol. 1). Oxford university press.
Cai, M., Kaiser, P. K., Tasaka, Y., & Minami, M. (2007). Determination of residual strength parameters of jointed rock masses using the GSI system. International Journal of Rock Mechanics and Mining Sciences, 44(2), 247 265.
Chen, J. H., & Ursell, C. R. 1979. Comparison of Wire Rope Life Using Nylon and Steel Sheaves-Part 1: Test Methodology and Comparison of Wire Rope Endurance Life (No. 790904). SAE Technical Paper.
Crowder JJ, Bawden WF. 2004. Review of post-peak parameters and behaviour of rock masses: current trends and research. Rocnews.
Gao FQ, Kang HP. 2016. Effects of pre-existing discontinuities on the residual strength of rock mass—insight from a discrete element method simulation. J Struct Geol 85:40–50
Hoek, E. 2007. Practical rock engineering. e-book. Toronto: Rocscience (electronic resource).
Jaeger, J. C. 1971. Friction of rocks and stability of rock slopes. Geotechnique, 21(2), 97-134.
Labrie D. 2017. Frictional properties of rocks as a function of rock type, specimen size and confining pressure. In: The 51st US Rock Mechanics Symposium. American Rock Mechanics Associatio.
Mehrishal, S., Sharifzadeh, M., Shahriar, K., & Song, J. J. 2016. An experimental study on normal stress and shear rate dependency of basic friction coefficient in dry and wet limestone joints. Rock Mechanics and Rock Engineering, 49(12), 4607-4629.
Mehrishal, S., Sharifzadeh, M., Shahriar, K., & Song, J. J. 2017. Shear model development of limestone joints with incorporating variations of basic friction coefficient and roughness components during shearing. Rock Mechanics and Rock Engineering, 50(4), 825-855.
Paterson, M. S., & Wong, T. F. 2005. Friction and sliding phenomena. Experimental Rock Deformation—The Brittle Field, 165-209.
Popov, V. L. 2010. Contact mechanics and friction (pp. 231-253). Berlin: Springer Berlin Heidelberg.
Scholz C H, Engelder J T, 1976 The role of asperity indentation and ploughingin rock friction: Asperity creep and stick-slip. Int. J. Rock Mech. Men.and Geomech. Abstr. 13, 149-154.
Scholz, C. H. 2019. The mechanics of earthquakes and faulting. Cambridge university press.
Singh, H. K., & Basu, A. 2018. Evaluation of existing criteria in estimating shear strength of natural rock discontinuities. Engineering Geology, 232, 171-181.
Stachowiak, G., & Batchelor, A. W. 2004. Experimental methods in tribology (Vol. 44). Elsevier.
Walton, G., Labrie, D., & Alejano, L. R. 2019. On the Residual Strength of Rocks and Rockmasses. Rock Mechanics and Rock Engineering, 1-13.
Maurer W C. 1966. Shear failure of rock under axial and hydrostatic pressure.  In: Proc. 1st Congr.  Int. Soc. Rock Mech., Lisbon, Vol.  I, pp.  337-34.
Engelder J T. 1974a. Cataclasis and the generation of fault gouge. Bull. Geol. Soc. Am.  85, 1515-1522.