مطالعه آزمایشگاهی اثر اضافه شدن ضایعات کارخانه سنگ بر مقاومت خاک تثبیت شده با آهک و سیمان در برابر چرخه های ذوب و یخبندان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

2 گروه عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران

3 گروه عمران، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران.

4 گروه مهندسی عمران، واحد دولت آباد، دانشگاه آزاد اسلامی، دولت آباد، ایران

چکیده

در این مقاله مقادیر وزن مخصوص خشک ماکزیمم، رطوبت بهینه و مقاومت برشی نمونه‌های تثبیت شده خاک ماسه لای‌دار بهسازی شده با ضایعات خرده سنگ حاصل از فعالیت صنایع سنگبری، مورد بررسی قرار گرفته است. اثر مقدار خرده سنگ، سیمان، آهک، زمان عمل آوری و تعداد سیکل‌های ذوب و یخبندان بعنوان متغیرهای اصلی مورد بررسی قرار گرفته است. نتایج آزمایش‌های پراکتور اصلاح شده نشان می‌دهد که وزن مخصوص خشک ماکزیمم با افزایش خرده سنگ، سیمان یا آهک روند افزایشی دارد و همچنین رطوبت بهینه با افزایش خرده سنگ کاهش چشم گیری پیدا می‌کند. نتایج آزمایش CBR نشان می‌دهد که در تمامی نمونه‌ها، افزایش مدت زمان عمل‌آوری باعث افزایش چشم‌گیری در مقادیر CBR شده است. افزایش مقدار خرده سنگ در نمونه‌های تثبیت شده با آهک و سیمان باعث افزایش CBR شده است. افزایش مقادیر سیمان یا آهک در نمونه‌های تثبیت شده با مقادیر یکسانی از خرده سنگ در یک مدت زمان عمل آوری خاص، باعث افزایش مقاومت شده است. مقایسه نتایج بین نمونه‌های تثبیت شده با سیمان و آهک نشان می‌دهد که نمونه‌های تثبیت شده با سیمان مقاومت بیشتری نسبت به نمونه‌های تثبیت شده با آهک در شرایط یکسان دارد. نتایج آزمایش‌های ذوب و یخبندان نیز نشان می‌دهد که افزایش تعداد سیکل‌های ذوب و یخبندان موجب کاهش CBR نمونه-های تثبیت شده با آهک و سیمان می‌شود. اثر تعداد سیکل‌های ذوب و یخبندان بر کاهش مقاومت نمونه‌ها با افزایش مقدار خرده سنگ، چشمگیرتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Laboratory study on the effects of stone factory waste on the resistance of cement or lime stabilized soil against freeze-thaw cycles

نویسندگان [English]

  • Mohsen Salehi 1
  • Meysam Bayat 2
  • Mohsen Saadat 3
  • Masoud Nasri 4
1 Department of Civil Engineering, Najafabad branch, Islamic Azad University, Najafabad, Iran
2 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
3 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
4 , Department of Civil Engineering, Dolatabad branch, Islamic Azad University, Dolatabad, Iran
چکیده [English]

In this paper, the maximum dry density, Optimum moisture content and CBR value of stabilized soil specimens mixed with crushed stone obtained from rock factory waste have been investigated. The effects of the crushed stone waste, cement or lime contents, curing time and number of freeze-thaw cycles have been investigated. The results of standard Proctor compaction tests show that the maximum dry density has an increasing trend due to the increase in crushed stone, cement or lime content, and also the optimum moisture decreased significantly with the increase of the crushed stone content. The results of the CBR test show that the increase in processing time caused a significant increase in CBR values. Increasing the crushed stone waste in lime or cement-stabilized specimens results in an increase of CBR value. Increasing the cement or lime content increases the strength of the specimens for a given crushed stone content and curing time. Comparing the results between cement and lime-stabilized specimens shows that cement-stabilized specimens have more resistant than lime-stabilized specimens under the same condition. The results of freezing-thawing tests show that increasing the number of freeze-thaw cycles decreases the CBR value of lime or cement-stabilized specimens. The effect of the number of freeze-thaw cycles on reducing the resistance of the specimens is more significant with increasing the crushed stone content.

کلیدواژه‌ها [English]

  • Silty sand
  • Crushed stone
  • Stabilization
  • Cement
  • Lime
Al Adili, A., Azzam, R., Spagnoli, G., and Schrader, J. 2012. Strength of soil reinforced with fiber materials (Papyrus). Soil Mechanics and Foundation Engineering, 48(6): 241–247. doi:10.1007/s11204-012-9154-z.
Al-Rawas, A.A., Hago, A.W., and Al-Sarmi, H. 2005. Effect of lime, cement and Sarooj (artificial pozzolan) on the swelling potential of an expansive soil from Oman. Building and Environment, 40(5): 681–687. doi:10.1016/j.buildenv.2004.08.028.
Aryal, S., and Kolay, P.K. 2020. Long-Term Durability of Ordinary Portland Cement and Polypropylene Fibre Stabilized Kaolin Soil Using Wetting–Drying and Freezing–Thawing Test. International Journal of Geosynthetics and Ground Engineering, 6(1). Springer International Publishing. doi:10.1007/s40891-020-0191-9.
ASTM-D1557. 2012. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). Available from https://www.astm.org/Standards/D1557.htm. [accessed 24 November 2020].
ASTM-D1883. 2018. Standard Test Method for CBR (California Bearing Ratio) of Soils. Available from https://www.astm.org/DATABASE.CART/HISTORICAL/D1883-05.htm. [accessed 24 November 2020].
Barros, M.M., de Oliveira, M.F.L., da Conceição Ribeiro, R.C., Bastos, D.C., and de Oliveira, M.G. 2020. Ecological bricks from dimension stone waste and polyester resin. Construction and Building Materials, 232: 117252. Elsevier Ltd. doi:10.1016/j.conbuildmat.2019.117252.
Bayat, M., Asgari, M.R., and Mousivand, M. 2013. Effects of cement and lime treatment on geotechnical properties of a low plasticity clay. In International Conference on Civil Engineering Architecture & Urban Sustainable Development 27&28 November 2013, Tabriz, Iran Effects.
Beeghly, J.H., and Schrock, M. 2009. Dredge material stabilization using the pozzolanic or sulfo-pozzolanic reaction of lime by-products to make an engineered structural fill. 3rd World of Coal Ash, WOCA Conference - Proceedings, 3(1).
Boz, A., and Sezer, A. 2018. Influence of fiber type and content on freeze-thaw resistance of fiber reinforced lime stabilized clay. Cold Regions Science and Technology, 151: 359–366. Elsevier B.V. doi:10.1016/j.coldregions.2018.03.026.
Boz, A., Sezer, A., Özdemir, T., Hızal, G.E., and Azdeniz Dolmacı, Ö. 2018. Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(6). doi:10.1007/s12517-018-3458-x.
Cabalar, A.F., Hassan, D.I., and Abdulnafaa, M.D. 2017. Use of waste ceramic tiles for road pavement subgrade. Road Materials and Pavement Design, 18(4): 882–896. Taylor and Francis Ltd. doi:10.1080/14680629.2016.1194884.
Carvalho, A., de Castro Xavier, G., Alexandre, J., Pedroti, L.G., de Azevedo, A.R.G., Vieira, C.M.F., and Monteiro, S.N. 2014. Environmental durability of soil-cement block incorporated with ornamental stone waste. Materials Science Forum, 798–799(June): 548–553. doi:10.4028/www.scientific.net/MSF.798-799.548.
Cheng, Y., Wang, S., Li, J., Huang, X., Li, C., and Wu, J. 2018. Engineering and mineralogical properties of stabilized expansive soil compositing lime and natural pozzolans. Construction and Building Materials, 187: 1031–1038. Elsevier Ltd. doi:10.1016/j.conbuildmat.2018.08.061.
Chouhan, H.S., Kalla, P., Nagar, R., Gautam, P.K., and Arora, A.N. 2020. Investigating use of dimensional limestone slurry waste as fine aggregate in mortar. Environment, Development and Sustainability, 22(3): 2223–2245. Springer. doi:10.1007/s10668-018-0286-9.
Croft, J.B. 1967. The influence of soil mineralogical composition on cement stabilization. Geotechnique, 17(2): 119–135.  Thomas Telford Ltd . doi:10.1680/geot.1967.17.2.119.
Ding, M., Zhang, F., Ling, X., and Lin, B. 2018. Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Regions Science and Technology, 154: 155–165. Elsevier B.V. doi:10.1016/j.coldregions.2018.07.004.
Elif Orakoglu, M., Liu, J., and Niu, F. 2017. Dynamic behavior of fiber-reinforced soil under freeze-thaw cycles. Soil Dynamics and Earthquake Engineering, 101(July): 269–284. Elsevier Ltd. doi:10.1016/j.soildyn.2017.07.022.
Ellaby, L. 2010. The History of Soil Stabilisation. In Ezine @rticles.
Fan, W., Yang, P., and Yang, Z. (Joey). 2019. Impact of freeze-thaw on the physical properties and compressibility of saturated clay. Cold Regions Science and Technology, 168: 102873. Elsevier B.V. doi:10.1016/j.coldregions.2019.102873.
Gavali, H.R., Bras, A., Faria, P., and Ralegaonkar, R. V. 2019. Development of sustainable alkali-activated bricks using industrial wastes. Elsevier Ltd.
Ghadir, P., and Ranjbar, N. 2018. Clayey soil stabilization using geopolymer and Portland cement. Construction and Building Materials, 188: 361–371. Elsevier Ltd. doi:10.1016/j.conbuildmat.2018.07.207.
Ghorbani, A., and Hasanzadehshooiili, H. 2018. Prediction of UCS and CBR of microsilica-lime stabilized sulfate silty sand using ANN and EPR models; application to the deep soil mixing. Soils and Foundations, 58(1): 34–49. Japanese Geotechnical Society. doi:10.1016/j.sandf.2017.11.002.
Hamidi, A., and Hooresfand, M. 2013. Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36: 1–9. doi:10.1016/j.geotexmem.2012.10.005.
Harichane, K., Ghrici, M., Kenai, S., and Grine, K. 2011. Use of Natural Pozzolana and Lime for Stabilization of Cohesive Soils. Geotechnical and Geological Engineering, 29(5): 759–769. doi:10.1007/s10706-011-9415-z.
Hossain, K.M.A., and Mol, L. 2011. Some engineering properties of stabilized clayey soils incorporating natural pozzolans and industrial wastes. Construction and Building Materials, 25(8): 3495–3501. Elsevier Ltd. doi:10.1016/j.conbuildmat.2011.03.042.
Ignat, R., Baker, S., Holmén, M., and Larsson, S. 2019. Triaxial extension and tension tests on lime-cement-improved clay. Soils and Foundations, 59(5): 1399–1416. Elsevier B.V. doi:10.1016/j.sandf.2019.06.004.
Jongpradist, P., Jumlongrach, N., Youwai, S., and Chucheepsakul, S. 2010. Influence of fly ash on unconfined compressive strength of cement-admixed clay at high water content. Journal of Materials in Civil Engineering, 22(1): 49–58. doi:10.1061/(ASCE)0899-1561(2010)22:1(49).
Kamei, T., Ahmed, A., and Ugai, K. 2013. Durability of soft clay soil stabilized with recycled Bassanite and furnace cement mixtures. Soils and Foundations, 53(1): 155–165. Japanese Geotechnical Society. doi:10.1016/j.sandf.2012.12.011.
Kamon, M., Ying, C., and Katsumi, T. 1996. Effect of Acid Rain on Lime and Cement Stabilized Soils. Soils and Foundations, 36(4): 91–99. Elsevier BV. doi:10.3208/sandf.36.4_91.
Kravchenko, E., Liu, J., Niu, W., and Zhang, S. 2018. Performance of clay soil reinforced with fibers subjected to freeze-thaw cycles. Cold Regions Science and Technology, 153(2017): 18–24. Elsevier B.V. doi:10.1016/j.coldregions.2018.05.002.
Kumar, S.M.P. 2011. Cementitious Compounds Formation Using Pozzolans and Their Effect on Stabilization of Soils of Varying. 8: 212–215.
Li, A., Niu, F., Xia, C., Bao, C., and Zheng, H. 2019a. Water migration and deformation during freeze-thaw of crushed rock layer in Chinese high-speed railway subgrade: Large scale experiments. Cold Regions Science and Technology, 166(June): 102841. Elsevier. doi:10.1016/j.coldregions.2019.102841.
Li, R., Zhou, Y., Li, C., Li, S., and Huang, Z. 2019b. Recycling of industrial waste iron tailings in porous bricks with low thermal conductivity. Construction and Building Materials, 213: 43–50. Elsevier Ltd. doi:10.1016/j.conbuildmat.2019.04.040.
Liu, J., Wang, T., and Tian, Y. 2010. Experimental study of the dynamic properties of cement- and lime-modified clay soils subjected to freeze-thaw cycles. Cold Regions Science and Technology, 61(1): 29–33. Elsevier. doi:10.1016/j.coldregions.2010.01.002.
Liu, Y., Chang, C.W., Namdar, A., She, Y., Lin, C.H., Yuan, X., and Yang, Q. 2019. Stabilization of expansive soil using cementing material from rice husk ash and calcium carbide residue. Construction and Building Materials, 221: 1–11. Elsevier Ltd. doi:10.1016/j.conbuildmat.2019.05.157.
Lu, Y., Liu, S., Zhang, Y., Li, Z., and Xu, L. 2020. Freeze-thaw performance of a cement-treated expansive soil. Cold Regions Science and Technology, 170: 102926. Elsevier B.V. doi:10.1016/j.coldregions.2019.102926.
Ojuri, O.O., Adavi, A.A., and Oluwatuyi, O.E. 2017. Geotechnical and environmental evaluation of lime–cement stabilized soil–mine tailing mixtures for highway construction. Transportation Geotechnics, 10(April 2018): 1–12. Elsevier Ltd. doi:10.1016/j.trgeo.2016.10.001.
Pandian, N.S., and Krishna, K.C. 2003. The pozzolanic effect of fly ash on the California bearing ratio behavior of black cotton soil. Journal of Testing and Evaluation, 31(6): 479–485. ASTM International. doi:10.1520/jte12375j.
Panfilova, M.I., Zubrev, N.I., Efremova, S.Y., Yakhkind, M.I., and Gorbachevskii, V.P. 2020. Strengthening of water-saturated soils of the bases of underground structures with composite solutions modified by industrial waste, boehmite. Case Studies in Construction Materials, 12. doi:10.1016/j.cscm.2019.e00323.
Pongsivasathit, S., Horpibulsuk, S., and Piyaphipat, S. 2019. Assessment of mechanical properties of cement stabilized soils. Case Studies in Construction Materials, 11: e00301. Elsevier Ltd. doi:10.1016/j.cscm.2019.e00301.
Rajput, S.P.S. 2018. An Experimental study on crushed stone dust as fine aggregate in cement concrete. Materials Today: Proceedings, 5(9): 17540–17547. Elsevier Ltd. doi:10.1016/j.matpr.2018.06.070.
Rana, A., Kalla, P., and Csetenyi, L.J. 2017. Recycling of dimension limestone industry waste in concrete. International Journal of Mining, Reclamation and Environment, 31(4): 231–250. doi:10.1080/17480930.2016.1138571.
Saadat, M., and Bayat, M. 2019. Prediction of the unconfined compressive strength of stabilised soil by Adaptive Neuro Fuzzy Inference System (ANFIS) and Non-Linear Regression (NLR). Geomechanics and Geoengineering,. Taylor and Francis Ltd. doi:10.1080/17486025.2019.1699668.
Saygili, A., and Dayan, M. 2019. Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers. Cold Regions Science and Technology, 161: 107–114. Elsevier B.V. doi:10.1016/j.coldregions.2019.03.010.
Sharma, R. 2018. Laboratory study on sustainable use of cement–fly ash–polypropylene fiber-stabilized dredged material. Environment, Development and Sustainability, 20(5): 2139–2159. Springer Netherlands. doi:10.1007/s10668-017-9982-0.
Shihata, S.A., and Baghdadi, Z.A. 2001. Simplified method to assess freeze-thaw durability of soil cement. Journal of Materials in Civil Engineering, 13(4): 243–247. doi:10.1061/(ASCE)0899-1561(2001)13:4(243).
Singh Chouhan, H., Kalla, P., Nagar, R., and Kumar Gautam, P. 2019. Influence of dimensional stone waste on mechanical and durability properties of mortar: A review. Construction and Building Materials, 227: 116662. Elsevier Ltd. doi:10.1016/j.conbuildmat.2019.08.043.
Sivrikaya, O., Kiyildi, K.R., and Karaca, Z. 2014. Recycling waste from natural stone processing plants to stabilise clayey soil. Environmental Earth Sciences, 71(10): 4397–4407. Springer Verlag. doi:10.1007/s12665-013-2833-x.
Stefanidou, M., Tsardaka, E.C., and Pavlidou, E. 2017. Influence of nano-silica and nano-alumina in lime-pozzolan and lime-metakaolin binders. Materials Today: Proceedings, 4(7): 6908–6922. Elsevier Ltd. doi:10.1016/j.matpr.2017.07.020.
Sukmak, P., Kunchariyakun, K., Sukmak, G., Horpibulsuk, S., Kassawat, S., and Arulrajah, A. 2019. Strength and Microstructure of Palm Oil Fuel Ash-Fly Ash-Soft Soil Geopolymer Masonry Units. Journal of Materials in Civil Engineering, 31(8). American Society of Civil Engineers (ASCE). doi:10.1061/(ASCE)MT.1943-5533.0002809.
Tabatabaei, J., and Mohammadi, F. 2013. Environmental Effects of Mining Industries in Meymeh Region, North West of Isfahan. APCBEE Procedia, 5: 388–393. Elsevier BV. doi:10.1016/j.apcbee.2013.05.067.
Tonet, K.G., and Gorninski, J.P. 2013. Polymer concrete with recycled PET: The influence of the addition of industrial waste on flammability. Construction and Building Materials, 40: 378–389. Elsevier. doi:10.1016/j.conbuildmat.2012.09.049.
Vakili, A.H., Selamat, M.R., Moayedi, H., and Amani, H. 2013. Stabilization of dispersive soils by pozzolan. Forensic Engineering 2012: Gateway to a Better Tomorrow - Proceedings of the 6th Congress on Forensic Engineering,: 726–735. doi:10.1061/9780784412640.077.
Yilmaz, F., Kamiloʇlu, H.A., and Şadoʇlu, E. 2015. Soil stabilization with using waste materials against freezing thawing effect. Acta Physica Polonica A, 128(2): 392–394. doi:10.12693/APhysPolA.128.B-392.
Zhang, Y., Johnson, A.E., and White, D.J. 2016. Laboratory freeze-thaw assessment of cement, fly ash, and fiber stabilized pavement foundation materials. Cold Regions Science and Technology, 122: 50–57. Elsevier B.V. doi:10.1016/j.coldregions.2015.11.005.