ارزیابی عوامل موثر بر سایش سرمته‌های سه‌مخروطی دورانی دستگاه‌های حفاری در معادن روباز- مطالعه موردی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد دانشکده معدن دانشگاه صنعتی شاهرود

2 دانشگاه صنعتی شاهرود

3 دانشگاه صنعتی اصفهان

4 کارشناس ارشد مهندسی استخراج معدن، رئیس واحد حفاری و انفجار امور معدن مس سرچشمه، سرچشمه

چکیده

استخراج و بهره‌برداری یکی از بخش‌های مهم در حوزه‌ی معادن و صنایع معدنی است. حفر چال‌های انفجاری اولین مرحله از چرخه‌ی تولید در معادن روباز می‌باشد که قسمت عمده‌ای از هزینه‌های استخراج را به خود اختصاص می‌دهند. سرمته‌‌ها به عنوان یکی از حساس‌ترین و مهم-ترین قسمت‌های حفاری در فرآیندهای عملیاتی، با توجه به نوع کاربرد و هزینه‌های بالای تمام شده از اهمیت بسیار بالایی برخوردار است. سایش و فرسودگی این ابزار پارامتر مهمی برای برآورد کارایی تجهیزات حفاری در پروژه‌های معدنی است. سایش سرمته‌های حفاری تابع عوامل مختلفی است که برخی وابسته به ماشین‌آلات، پارامترهای عملیاتی و پارامترهای مدیریتی و برخی تابع شرایط و خصوصیات ماده سنگ و توده سنگ و محیط اطراف است. بررسی پارامترهای مؤثر بر سایش سرمته‌ها می‌تواند با کاهش اثرات سایش، از هدر رفتن زمان و هزینه‌های اضافی وارد بر فرآیند حفاری جلوگیری ‌نماید. لذا در این تحقیق ارزیابی عوامل موثر بر سایش سرمته‌های سه‌مخروطی دورانی در معدن مس سرچشمه مورد بررسی قرار گرفته است. برای این منظور ابتدا سایش سرمته‌های سه‌مخروطی دورانی از طریق افت وزنی محاسبه شده و با تعیین پارامترهای موثر، ارتباط بین این عوامل و سایش سرمته‌های سه‌مخروطی دورانی از طریق روش آماری تعیین شده است. سپس با استفاده از تحلیل حساسیت مقدار تاثیر پارامترهای ورودی بر روی هدف تعیین شده است. نتایج این تحلیل‌ها نشان می‌دهد که تمامی پارامترهای تحقیق به غیر از شاخص شدت دگرسانی شیمیایی، تخلخل و کوارتز محتوی معادل سنگ بر روی خروجی مورد نظر (سایش سرمته‌های سه‌مخروطی دورانی) تاثیرگذارند .

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of factors affecting in tricone rotary bits wear of drilling machines in Open Pit Mines - A Case Study

نویسندگان [English]

  • Mohammad Ataei 1
  • Rasool Remazannia 2
  • Reza Kakaie 2
  • Hadi Hoseinie 3
  • Majid Salehinasab 4
1 Shahrood unicersity of technology
2 Shahrood University of Technology
3 Isfahan University of Technology
4 MSc in Mining Engineering, Head of drilling and blasting unit, Sarcheshmeh Copper Mine.
چکیده [English]

Extraction and exploitation is one of the important parts in the field of mines and mining industries. Blast hole drilling is the first stage of the production cycle in open pit mines. Which account for a large part of the exploitation costs. In operational processes, bits are one of the most sensitive and important parts of drilling, due to the type of application and high costs. Wear of these tools are an important parameter for estimating the efficiency of drilling equipment in mining projects. Wear of drilling bits is a function of various factors, some of which are related to machinery, operational parameters and management parameters, and some are dependent on the conditions and rock properties and rock mass and the surrounding environment. Examining the parameters affecting the tricone rotary bits wear can prevent wasting time and additional costs of the drilling process. Therefore, in this study, the evaluation of the factors affecting the tricone rotary bits wear in Sarcheshmeh copper mine has been investigated. For this purpose, the tricone rotary bits wear has been calculated through weight loss and by determining the effective parameters, the relationship between these factors and the tricone rotary bits wear has been determined through statistical methods. Then, using sensitivity analysis, the effect of input parameters on the target is determined. The results of these analyzes show that all the parameters of the study except the Chemical Index of Alteration (CIA), porosity and Equivalent Quartz Content on the desired output (the tricone rotary bits wear).

کلیدواژه‌ها [English]

  • Drilling
  • Wear
  • tricone rotary bits
  • Statistical method
  • Sensitivity analysis
Adebayo, B. (2011). Effect of textural characteristics of rock on bit wear. AU Journal of Technology, 14(4).
Adebayo, B. (2019). Evaluation of the Performance of Atlas Copco SDR4 Rotary Drill In Sagamu Limestone Formation, Nigeria. FUTA Journal of Engineering and Engineering Technology, 13(1), 12-19.
Adebayo, B., & Adetula, B. (2013). Evaluation of physical and mechanical properties of rock for drilling condition classification. World Journal of Engineering, 10(4), 359-366.
Adebayo, B., & Akande, J. M. (2015). Analysis of Button Bit Wear and Performance of Down-The-Hole Hammer Drill. Ghana Mining Journal, 15(2), 36-41.
Adebayo, B., & Akeju, V. O. (2012). Evaluation of Tri-cone Bit Performance on Limestone Formation. In Advanced Materials Research (Vol. 367, pp. 555-560). Trans Tech Publications.
Adebayo, B., & Akeju, V. O. (2012). Correlation of Limestone Properties with Bit Performance Variables for LIMROCKWARE2010 Development. Journal of Mining World Express, 1(2), 34-38.
Adebayo, B., & Bello, W. A. (2012). Property Analysis for Correlation of Specific Energy with Penetration Rate and Bit Wear Rate. In Advanced Materials Research (Vol. 367, pp. 547-553). Trans Tech Publications.
Adebayo, B., & Okewale, I. A. (2007). Analysis of the potential of some Nigerian rocks to wear drill bit. Aust J Technol, 11, 1-5.
Adebayo, B., Opafunso, Z. O., & Akande, J. M. (2010). Drillability and strength characteristics of selected rocks in Nigeria. AU JT, 14(1), 56-60.
Al-Sudani, J. A. (2017). Real-time monitoring of mechanical specific energy and bit wear using control engineering systems. Journal of Petroleum Science and Engineering, 149, 171-182.
Angseryd, J., From, A., Wallin, J., Jacobson, S., & Norgren, S. (2013). On a wear test for rock drill inserts. Wear, 301(1), 109-115.
Babatunde, A. (2015). Development of rock bitwear models for selected rocks in Nigeria using dominant rock properties. World Journal of Engineering, 12(4), 331-340.
Capik, M., & Batmunkh, B. (2020). Measurement, Prediction and Modeling of Bit Wear in During Drilling Operations. Journal of Mining and Environment.
Dogruoz, C., Bolukbasi, N., Rostami, J., & Acar, C. (2016). An Experimental Study of Cutting Performances of Worn Picks. Rock Mechanics and Rock Engineering, 49(1), 213-224.
Dudek, R., & Władzielczyk, K. (2018). Wear Testing of Buttons in Bits for Blasthole Drilling. Tribologia.
Ersoy, A., & Waller, M. D. (1995). Textural characterisation of rocks. Engineering Geology, 39(3-4), 123-136.
Ersoy, A., & Waller, M. D. (1995). Wear characteristics of PDC pin and hybrid core bits in rock drilling. Wear, 188(1), 150-165.
Ersoy, A., & Waller, M. D. (1997). Drilling detritus and the operating parameters of thermally stable PDC core bits. International Journal of Rock Mechanics and Mining Sciences, 34(7), 1109-1123.
Ghosh, R., Schunnesson, H., & Kumar, U. (2016). Evaluation of operating life length of rotary tricone bits using Measurement While Drilling data. International Journal of Rock Mechanics and Mining Sciences, 83, 41-48.
Howarth, D. F., & Rowlands, J. C. (1987). Quantitative assessment of rock texture and correlation with drillability and strength properties. Rock Mechanics and Rock Engineering, 20(1), 57-85.
Jong, Y. H., & Lee, C. I. (2004). Influence of geological conditions on the powder factor for tunnel blasting. International Journal of Rock Mechanics and Mining Sciences, 41, 533-538.
Karasawa, H., Ohno, T., Miyazaki, K., & Eko, A. (2016). Experimental results on the effect of Bit wear on torque response. International Journal of Rock Mechanics and Mining Sciences, 84, 1-9.
Kolapo, P. (2020). Investigating the Effects of Mechanical Properties of Rocks on Specific Energy and Penetration Rate of Borehole Drilling. Geotechnical and Geological Engineering, 1-12.
Larsen-Basse, J. (1973). Wear of hard-metals in rock drilling: a survey of the literature. Powder Metallurgy.
Majeed, Y., Bakar, M. A., & Butt, I. A. (2020). Abrasivity evaluation for wear prediction of button drill bits using geotechnical rock properties. Bulletin of Engineering Geology and the Environment, 79(2), 767-787.
Miller, D., & Ball, A. (1990). An instrumented laboratory machine for the evolution of drill bit performance. Journal of the South African Institute of Mining and Metallurgy, 90(10), 283-288.
Miller, D., & Ball, A. (1991). The wear of diamonds in impregnated diamond bit drilling. Wear, 141(2), 311-320.
Mazen, A. Z., Rahmanian, N., Mujtaba, I. M., & Hassanpour, A. (2019). Estimation of Dulling Rate and Bit Tooth Wear Using Drilling Parameters and Rock Abrasiveness.
Naganawa, S. (2012). Feasibility study on roller-cone bit wear detection from axial bit vibration. Journal of Petroleum Science and Engineering, 82, 140-150.
Piri, M., Hashemolhosseini, H., Mikaeil, R., Ataei, M., & Baghbanan, A. (2020). Investigation of wear resistance of drill bits with WC, Diamond-DLC, and TiAlSi coatings with respect to mechanical properties of rock. International Journal of Refractory Metals and Hard Materials, 87, 105113.
Plinninger, R. J., Spaun, G., & Thuro, K. (2002). Predicting tool wear in drill and blast. Tunnels & Tunneling International Magazine, 1-5.
Plinninger, R. J., Spaun, G., & Thuro, K. (2002, September). Prediction and Classification of tool wear in drill and blast tunnelling. In Engineering Geology for Developing Countries—Proceedings of the 9th Congress of the International Association for Engineering Geology and the Environment, Durban (pp. 16-20).
Plinninger, R. J. (2008). Abrasiveness assessment for hard rock drilling. Geomechanics and Tunnelling, 1(1), 38-46.
Prieto, L. A. (2012). The Cerchar abrasivity index’s applicability to dredging rock. In Proc Western Dredging Association (WEDA XXXII) Technical Conference and Texas A& M University (TAMU 43) Dredging Seminar. WEDA.
Rashidi, B., Hareland, G., & Nygaard, R. (2008, January). Real-time drill bit wear prediction by combining rock energy and drilling strength concepts. In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers.
Rashidi, B., Hareland, G., Tahmeen, M., Anisimov, M., & Abdorazakov, S. (2010, January). Real-Time Bit Wear Optimization Using the Intelligent Drilling Advisory System (Russian). In SPE Russian Oil and Gas Conference and Exhibition. Society of Petroleum Engineers.
Rashidi, B., Hareland, G., & Wu, A. (2010, January). New approach in real-time bit wear prediction. In Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers.
Saeidi, O., Elyasi, A., & Torabi, S. R. (2015). Wear Assessment of the WC/CO cemented carbidetricone drillbits in an open pit mine.
Sahoo, S. K., & Choudhary, B. (2017). Effect of uniaxial compressive strength of rock on penetration rate and bit wear rate of drill. Ereen gold ore deposit, MONGOLIA, 454.
Shankar, V. K., Kunar, B. M., Murthy, C. S., & Ramesh, M. R. (2020). Measurement of bit-rock interface temperature and wear rate of the tungsten carbide drill bit during rotary drilling. Friction, 8(6), 1073-1082.
Song, X., Aamo, O. M., Kane, P. A., & Detournay, E. (2020). Influence of Weight-on-Bit on Percussive Drilling Performance. Rock Mechanics and Rock Engineering, 1-15.
Šporin, J., Balaško, T., Mrvar, P., Janc, B., & Vukelić, Ž. (2020). Change of the Properties of Steel Material of the Roller Cone Bit Due to the Influence of the Drilling Operational Parameters and Rock Properties. Energies, 13(22), 5949.
Wu, A., Hareland, G., & Rashidi, B. (2010, January). The effect of different rock types and roller cone insert types and wear on ROP (rate of penetration). In 44th US Rock Mechanics Symposium and 5th US-Canada Rock Mechanics Symposium. American Rock Mechanics Association.
Xuefeng, T., & Shifeng, T. (1994). The wear mechanisms of impregnated diamond bits. Wear, 177(1), 81-91.
Yahiaoui, M., Paris, J. Y., Denape, J., & Dourfaye, A. (2015). Wear mechanisms of WC–Co drill bit inserts against alumina counterface under dry friction: Part 1—WC–Co inserts with homogenous binder phase content. International Journal of Refractory Metals and Hard Materials, 48, 245-256.
Yetkin, M. E., Özfırat, M. K., Yenice, H., Şimşir, F., & Kahraman, B. (2016). Examining the relation between rock mass cuttability index and rock drilling properties. Journal of African Earth Sciences, 124, 151-158.