ارزیابی و مقایسه عملکرد مدل‌رگرسیون خطی (LINEAR) و جغرافیایی وزنی (GWR) در پهنه‌بندی خطر اندازه زمین‌لغزش‌های ناشی از زلزله 1369 رودبار-منجیل (Ww=7.3) بر اساس پارامترهای کنترل‌کننده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تربیت مدرس/ ایران

2 استادیار گروه زمین شناسی دانشگاه تربیت مدرس

3 پژوهشگاه بین المللی زلزله شناسی و مهندسی زلزله، پژوهشکده زلزله شناسی، تهران، ایران

چکیده

مطالعه حاضر به بازنگری و تکمیل پایگاه داده زمین لغزش‌های ناشی از زلزله 1369 رودبار- منجیل (Ww=7.3)، با استفاده از مطالعات پیشین، تفسیر استریوسکوپی عکس‌های هوایی و بررسی تصاویر ماهواره‌ای (قبل و بعد از زلزله) پرداخته است. تعداد 223 زمین لغزش پیوسته (به صورت چندضلعی و نقاطمرکزی) با استفاده از مدل رقومی ارتفاعی (DEM, 12.5m) توسط نرم افزار GIS، ترسیم شده‌اند. پهنه‌بندی کمی خطر اندازه (مساحت و حجم) زمین‌لغزش‌ها براساس پارامترهای کنترل‌کننده، توسط مدل رگرسیون خطی خودکار (LINEAR) و رگرسیون جغرافیایی وزنی (GWR) اجرا شد. پارامترهای کنترل‌کننده شاملِ گروه ژئوتکنیکی (چسبندگی و زاویه اصطکاک داخلی)، توپوگرافی (ارتفاع، شیب دامنه، جهت شیب لغزش و انحنای شیب) و لرزه‌ای (فاصله از سطح گسیختگی گسل و رومرکز زلزله، شدت آریاس و بیشینه شتاب زمین) هستند. نتایج نشان دادند که پهنه بندی کمی مدل GWR هم‌خوانی بیشتری با اندازه زمین‌لغزش‌های موجود در مقایسه با مدل LINEAR دارند. مساحت (LA) و حجم زمین لغزش ها (LV) نسبت به پارامترهای لرزه‌ای و توپوگرافی توزیع چندمُدی دارند. از این رو مدل غیرخطی GWR، باتوجه به اعمال اثرات محلی پارامترهای کنترل کننده بر اندازه زمین‌لغزش‌ها، نسبت به مدل‌ رگرسیون خطی پیشبینی دقیق‌تری ارائه می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation and comparison of the performance of linear regression (LINEAR) and geographically weighted regression (GWR) models in hazard zoning of the size of landslides triggered by the 1990 Rudbar-Manjil earthquake (Ww=7.3) based on controlling parameters

نویسندگان [English]

  • Ali Asghar Ghaedi Vanani 1
  • Gholamreza Shoaei 2
  • Mehdi Zare 3
1 Tarbiat Modares University
2 Assistant Prof. of enginnering geology, Geology group, Tarbiat Modaress University
3 International Institute of Seismology and Earthquake Engineering, Institute of Seismology, Tehran, Iran
چکیده [English]

This study has reviewed and completed the database of landslides triggered by the 1990 Rudbar-Manjil earthquake (Ww=7.3), using previous studies, stereoscopic interpretation of aerial photographs, and checking satellite images (before and after the earthquake). We mapped 223 coherent landslides as polygons and central points using a digital elevation model (DEM, 12.5 m) by GIS software. A quantitative hazard zoning of the size (area and volume) of landslides was implemented based on controlling parameters by automatic linear regression (LINEAR) and geographically weighted regression (GWR) models. The controlling parameters include geotechnical group (cohesion and internal friction angle), topography (elevation, slope, aspect, and curvature), and seismic (distance from the fault rupture surface and the epicenter of the earthquake, the intensity of Arias, and the peak ground acceleration). The results showed that the quantitative zoning of the GWR model is more consistent with the size of existing landslides compared to the LINEAR model. The landslide area (LA) and landslide volume (LV) have a multimodal distribution compared to seismic and topographic parameters. Therefore, the nonlinear GWR model prepares a more accurate prediction of zoning than the linear regression model owing to the local effects of controlling parameters on the size of landslides.

کلیدواژه‌ها [English]

  • landslides triggered by the earthquake
  • linear regression model
  • weighted geographically regression
  • Rudbar-Manjil
حافظی مقدس، ن.، و کمک پناه، ع.، 1372. پهنه بندی خطر زمین لغزش در ایران: شناسایی و به نقشه در آوردن زمین‌لغزش­های مهم تحریک شده در زلزله خرداد 1369 منجیل، پایان نامه کارشناسی ارشد، دانشگاه تربیت مدرس.
سوری، س.، لشکری پور، غ.، غفوری، م.، فرهادی، ط.، 1392. اولویت‌بندی عوامل مؤثر بر زمین‌لغزش و تهیه نقشه خطر آن با استفاده از مدل فرآیند تحلیل سلسله مراتبی (مطالعه موردی: حوضه کشوری). نشریه انجمن زمین شناسی مهندسی ایران 6 (شماره 1 و6) 1-12.
 شریعت جعفری، م.، 1387. ارزیابی ریسک ویژه زمین لغزش در بخشی از البرز جنوبی. نشریه انجمن زمین شناسی مهندسی ایران 1(شماره 3 و 4) 14-1.
طلائی، ر، و شریعت جعفری، م.، 1386. بررسی عوامل مؤثر در وقوع زمین لغزش در جنوب غرب خلخال با استفاده از جداول توافقی و آزمون های آماری مربع کای. نشریه انجمن زمین شناسی مهندسی ایران 1 (شماره 2 و 1) 62- 43.
مهدویفر، م.، 1385. پایان نامه برای دریافت درجه دکتری، ارزیابی تحلیلی و طراحی سامانه مدیریت ریسک زمین لغزش‌های ناشی از زلزله در کشور، پژوهشگاه بین‌المللی زلزله شناسی و مهندسی زلزله.
معماریان، پ.، 1396. توسعه مدل پهنه بندی خطر زمین لغزش ناشی از زلزله با استفاده از پایگاه داده ایران و به کارگیری منطق فازی. رساله دکتری. موسسه بین المللی مهندسی زلزله و زلزله شناسی.
Alonso Rodriguez , A., Miranda, E., 2015. Assessment of building behavior under near-fault pulse-like ground motions through simplified models. Soil Dynamics and Earthquake Engineering, 79, 47-58. doi:https://doi.org/10.1016/j.soildyn.2015.08.009.
Ambraseys, N.N., Melville, C.P., 1983. A history of Persian earthquakes. (Cambridge Earth Science Series.) xvii, 219 pp. Cambridge, etc.: Cambridge University Press, 1982. £35. Bulletin of the School of Oriental and African Studies, 46(2), 360-360. doi:10.1017/S0041977X00079131.
Archila, M., Ventura, C.E., Liam Finn, W.D., 2017. New insights on effects of directionality and duration of near-field ground motions on seismic response of tall buildings. The Structural Design of Tall and Special Buildings, 26(11), e1363. doi:10.1002/tal.1363.
Baeza C, Corominas J., 2001. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Process Landf 26:1251–1263
Bai, SB., Wang, J., Thiebes, B., Cheng, C., Chang, Z.Y., 2014. Susceptibility assessments of the Wenchuan earthquake-triggered landslides in Longnan using logistic regression. Environ Earth Sci 71:731–743.
Bao, H., Ampuero, J.P., Meng, L., Fielding, E.J., Liang, C., Milner, CWD., Feng, T., Huang, H., 2019. Early and persistent supershear rupture of the 2018 magnitude 7.5 Palu earthquake. Nat Geosci 12:200–205.
Berberian, M., Qorashi, M., Jackson, J.A., Priestley, K., Wallace, T., 1992. The Rudbar-Tarom earthquake of 20 June 1990 in NW Persia: Preliminary field and seismological observations, and its tectonic significance. Bulletin of the Seismological Society of America, 82(4), 1726-1755.
Berberian, M., 1994. Natural hazards and the first earthquake catalog of Iran, Vol. 1: historical hazards in Iran prior 1900, I.I.E.E.S. report.
Brunsdon, C., Fotheringham, A.S., Charlton, M., 1996. Geographically weighted regression: a method for exploring spatial nonstationarity. Geogr Anal 28(4):281–298.
mapping on the Peloponnese Peninsula, Greece. Geosciences 4:176–190.
Chalkias, C., Kalogirou, S., Ferentinou, M., 2014b. Landslide susceptibility map of the Peloponnese peninsula in South Greece. J Maps 10(2): 211–222.
Chen, C.-W., Iida, T., Yamada, R., 2017. Effects of active fault types on earthquake-induced deep-seated landslides: A study of historical cases in Japan. Geomorphology, 295, 680-689. doi:https://doi.org/10.1016/j.geomorph.2017.07.030.
Chigira, M., Wu, X., Inokuchi, T., Wang, G., 2010. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology, 118(3), 225-238. doi:https://doi.org/10.1016/j.geomorph.2010.01.003.
Cui, P., Guo, C.X., Zhou, J.W., Hao, M.h., Xu, F.G., 2014. The mechanisms behind shallow failures in slopes comprised of landslide deposits. Engineering Geology, 180, 34-44. doi:https://doi.org/10.1016/j.enggeo.2014.04.009.
Dai, F.C., Xu, C., Yao, X., Xu, L., Tu, X.B., Gong, Q.M., 2011. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. Journal of Asian Earth Sciences, 40 (4), 883-895. doi:https://doi.org/10.1016/j.jseaes.2010.04.010.
Del Gaudio, V., Pierri, P., Wasowski, J., 2003. An Approach to Time-Probabilistic Evaluation of Seismically Induced Landslide Hazard. Bulletin of the Seismological Society of America, 93 (2), 557-569. doi:10.1785/0120020016.
De La Ville N., Diaz, A.C., Ramirez, D., 2002. Remote sensing and GIS technologies as tools to support sustainable management of areas devastated by landslides. Environ Dev Sustain 4 (2):221–229.
Dagdelenler, G., Nefeslioglu, H.A., Gokceoglu, C., 2015. Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the eastern part of the Gallipoli Peninsula (Canakkale, Turkey). Bull Eng Geol Environ 75(2):575–590.
Du, S., Wang, Q., Guo, L., 2014. Spatially varying relationships between land-cover change and driving factors at multiple sampling scales. J Environ Manag 137:101–110.
Erener, A., Düzgün, HSB., 2010. Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway). Landslides 7(1):55–68.
Feuillet, T., Coquin, J., Mercier, D., Cossart, E., Decaulne, A., Páll Jónsson, H., Sæmundsson, Þ., 2014. Focusing on the spatial non-stationarity of landslide predisposing factors in northern Iceland: do paraglacial factors vary over space. Progress in Physical Geography, pp 1–24.
Fotheringham, A.S., Brunsdon, C., Charlton, M., 2002. Geographically weighted regression: the analysis of spatially varying relationships. Wiley, Chichester.
Gao, L., Wallace, T.C., 1995. The 1990 Rudbar-Tarom Iranian earthquake sequence: Evidence for slip partitioning. Journal of Geophysical Research: Solid Earth, 100 (B8), 15317-15332. doi:10.1029/95jb00320.
Ghasemi, H., Zare, M., Fukushima, Y., Koketsu, K., 2009. An empirical spectral ground-motion model for Iran. Journal of Seismology, 13(4), 499-515. doi:10.1007/s10950-008-9143-x.
Gordo-Monsó, C., Miranda, E., 2018. Significance of directivity effects during the 2011 Lorca earthquake in Spain. Bulletin of Earthquake Engineering, 16 (7), 2711-2728. doi:10.1007/s10518-017-0301-9.
Gorum, T., Fan, X., Van Westen, C.J., Huang, R.Q., Xu, Q., Tang, C., Wang, G., 2011. Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake. Geomorphology, 133(3), 152-167. doi:https://doi.org/10.1016/j.geomorph.2010.12.030.
factors during Wenchuan earthquake: A case study in Wenchuan County. Engineering Geology, 152(1), 202-209.
Guo, D., Hamada, M., He, C., 2014a. An evaluation of influential factors on landslide mobility during the 2008 Wenchuan earthquake. Nat Hazards Earth Syst Sci Discuss 2 (1): 613–647. doi:https://doi.org/10.1016/j.enggeo.2012.10.012.
Guo, D., Hamada, M., He, C., Wang, Y., Zou, Y., 2014b. An empirical model for landslide travel distance prediction in Wenchuan earthquake area. Landslides, 11 (2), 281-291. doi:10.1007/s10346-013-0444-y.
Guo, C.W., Huang, Y.D., Yao, L.K., Alradi, H., 2017. Size and spatial distribution of landslides induced by the 2015 Gorkha earthquake in the Bhote Koshi river watershed. Journal of Mountain Science, 14(10), 1938-1950. doi:10.1007/s11629-016-4140-y.
Guthrie, R.H., Evans, S.G., 2004. Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surface Processes and Landforms, 29 (11), 1321-1339. doi:10.1002/esp.1095.
Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., Valigi, D., 2009. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3), 222-229. doi:https://doi.org/10.1016/j.epsl.2009.01.005.
Haeri, S. M., 1996. Landslides induced by earthquake, a specific observation on earthquake induced landslides of Manjil 1990, Islamic Revolution Foundation for Housing, Tehran Iran,165 p, (in Persian).
Harp, E.L., Keefer, D.K., Sato, H.P., Yagi, H., 2011. Landslide inventories: The essential part of seismic landslide hazard analyses. Engineering Geology, 12 2(1), 9-21. doi:https://doi.org/10.1016/j.enggeo.2010.06.013.
He, Y., Beighley, R.E., 2008. GIS-based regional landslide susceptibility mapping: a case study in southern California. Earth Surf Process Landf 33(3):380–393.
Huang, R.Q., Li, W.L., 2009. Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China. Bulletin of Engineering Geology and the Environment, 68(3), 363-371. doi:10.1007/s10064-009-0207-0.
Jibson, R.W., Harp, E.L., Michael, J.A., 1998. A method for producing digital probabilistic seismic landslide hazard maps; an example from the Los Angeles, California, area (98-113). Retrieved from http://pubs.er.usgs.gov/publication/ofr98113.
Jibson, R.W., Keefer D.K., 1989. Statistical analysis of factors affecting landslide distribution in the new Madrid seismic zone, Tennessee and Kentucky. Engineering Geology, 27 (1), 509-542. doi:https://doi.org/10.1016/0013-7952(89)90044-6.
Kavzoglu T, Sahin EK, Colkesen, I., 2014. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11:425–439.
Kazar, B.M., Shekhar, S., Boley, D., Lilja, D.J., Pace, R.K., LeSage, J.P., 2005. Parameter estimation for the spatial autoregression model: a rigorous approach. IEEE Transactions On Knowledge and Data Engineering. Technical Report. Revisited date 13.01.2010 from http://www.cs.umn.edu/tech_reports_upload/tr2007/old_files/07-004.pdf.
Keefer, D.K., 1984. Landslides caused by earthquakes. GSA Bulletin, 95(4), 406-421. doi:10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2.
Keefer, D.K., 2002. Investigating landslides caused by earthquakes-a historical review. Surv Geophys 23(6):473–510.
Khodashahi, M., Rahimi, E., Bagheri, V., 2018. Earthquake-Induced Landslides Hazard Zonation of Rudbar-Manjil Using CAMEL Model. Geotechnical and Geological Engineering, 36(2), 1319-1340. doi:10.1007/s10706-017-0395-5.
Komak Panah, A., Hafezi Moghadas, N., 1993. Landslide hazard zonation study in affected area by Manjil earthquake, 1990. In Manual for zonation or seismic geotechnical hazards / prepared by the Technical Committee for Earthquake Geotechnical Engineering, TC4, of the International Society for Soil Mechanics and Foundation Engineering.: [Tokyo]: Japanese Society of Soil Mechanics and Foundation Engineering, c1993.
Li, G., West, A.J., Densmore, A.L., Jin, Z., Parker, R.N., Hilton, R.G., 2014. Seismic mountain building: Landslides associated with the 2008 Wenchuan earthquake in the context of a generalized model for earthquake volume balance. Geochemistry, Geophysics, Geosystems, 15 (4), 833-844. doi:10.1002/2013gc005067.
Li, S., Xu, Q., Tang, M., Iqbal, J., Liu, J., Zhu, X., Zhu, D., 2019. Characterizing the spatial distribution and fundamental controls of landslides in the three gorges reservoir area, China. Bulletin of Engineering Geology and the Environment, 78(6), 4275-4290. doi:10.1007/s10064-018-1404-5.
Liu, L., Xu, C., Xu, X., Tian, Y., Ran, Y., Chen, J., 2015. Interactive statistical analysis of predisposing factors for earthquake-triggered landslides: a case study of the 2013 Lushan, China Ms7.0 earthquake. Environmental Earth Sciences, 73(8), 4729-4738. doi:10.1007/s12665-014-3758-8.
Ma, S.Y., Xu, C., Xu, X.W., 2019. Volume expansion rates of seismic landslides and influencing factors: A case study of the 2008 Wenchuan earthquake. Journal of Mountain Science, 16 (8), 1731-1742. doi:10.1007/s11629-019-5479-7.
Martino, S., Bozzano, F., Caporossi, P., D’Angiò, D., Della Seta, M., Esposito, C., Fantini, A., Fiorucci, M., Giannini, L.M., Iannucci, R., Marmoni, G.M., Mazzanti, P., Missori, C., Moretto, S., Piacentini, D., Rivellino, S., Romeo, R.W., Sarandrea, P., Schilirò, L., Troiani, F., Varone, C., 2019. Impact of landslides on trasportation routes during the 2016-2017 Central Italy seismic sequence. Landslides 16(6):1221–1241.
Mahdavifar, M., 2006. Analytical evaluation and design of the system (GIS) for seismic landslides hazard managementin Iran. PhD thesis. International Institute of Earthquake Engineering and Seismology; 2006 [inPersian].
Mahdavifar, M., Jafari, M.K., Zolfaghari, M., 2008. Real-Time Generation of Arias Intensity and Seismic Landslides Hazards Maps Using GIS. JSEE, 10 (2), 81-90.
Mahdavifar, M., Memarian, P., 2013. Assessment of Earthquake-Induced Landslides Triggered by Roudbar-Manjil Earthquake in Rostamabad(Iran) Quadrangle Using Knowledge-Based Hazard Analysis Approach. In (pp. 769-780).
Marc, O., Hovius, N., Meunier, P., Gorum, T., Uchida, T., 2016. A seismologically consistent expression for the total area and volume of earthquake-triggered landsliding. Journal of Geophysical Research: Earth Surface, 121(4), 640-663. doi:10.1002/2015jf003732.
Marc, O., Meunier, P., Hovius, N., 2017. Prediction of the area affected by earthquake-induced landsliding based on seismological parameters. Nat. Hazards Earth Syst. Sci., 17(7), 1159-1175. doi:10.5194/nhess-17-1159-2017.
Massey, C., Townsend, D., Rathje, E., Allstadt, K. E., Lukovic, B., Kaneko, Y., Villeneuve, M., 2018. Landslides Triggered by the 14 November 2016 Mw 7.8 Kaikōura Earthquake, New Zealand. Bulletin of the Seismological Society of America, 108(3B), 1630-1648. doi:10.1785/0120170305.
Mavroeidis, G.P., Papageorgiou, A.S., 2003. A mathematical representation of near-fault ground motions. Bull Seismol Soc Am 93:1099–1131.
Meunier, P., Hovius, N., Haines, A.J., 2007. Regional patterns of earthquake-triggered landslides and their relation to ground motion. Geophysical Research Letters, 34(20). doi:10.1029/2007gl031337.
Meunier, P., Hovius, N., Haines, J.A., 2008. Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232. doi:https://doi.org/10.1016/j.epsl.2008.07.020.
Newmark, N.M., 1965. Effects of Earthquakes on Dams and Embankments. Géotechnique, 15(2), 139-160. doi:10.1680/geot.1965.15.2.139.
Parker, R.N., Densmore, A.L., Rosser, N.J., De Michele, M., Li Y, Huang R, Petley, D.N., 2011. Mass wasting triggered by the 2008 Wenchuan earthquake is greater than orogenic growth. Nature Geoscience, 4(7), 449-452. doi:10.1038/ngeo1154.
Petley, D.N., 2008. The global occurrence of fatal landslides in 2007. Geophysical Research Abstracts, vol. 10, EGU General Assembly 2008, p 3.
Pradhan, B., Youssef, A.M., Varathrajoo, R., 2010. Approaches for delineating landslide hazard areas using different training sites in an advanced artificial neural network model. Geo-spatial Information Science, 13(2), 93-102. doi:10.1007/s11806-010-0236-7.
Piacentini, D., Troiani, F., Soldati, M., Notarnicola, C., Savelli, D., Schneiderbauer, S., Strada, C., 2012. Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (South-Eastern Alps, Italy). Geomorphology 151–152:196–206.
Qi, S., Xu, Q., Lan, H., Zhang, B., Liu, J., 2010. Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China. Engineering Geology, 116 (1), 95-108. doi:https://doi.org/10.1016/j.enggeo.2010.07.011.
Rajabi AM, Khamehchiyan M, Mahdavifar MR, Del Gaudio V, Capolongo D., 2013. A time probabilistic approach to seismic landslide hazard estimates in Iran. Soil Dynamics and Earthquake Engineering, 48, 25-34. doi:https://doi.org/10.1016/j.soildyn.2012.09.005.
Ratner., B., 2012. Statistical and machine-learning data mining. Techniques for better predictive modeling and analysis of big data. 2nd ed.
Rodriguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn. Earthq. Eng. 18 (5), 325–346.
Shao C, Li Y, Lan H, Li P, Zhou R, Ding H, Deng T., 2019. The role of active faults and sliding mechanism analysis of the 2017 Maoxian postseismic landslide in Sichuan, China. Bulletin of Engineering Geology and the Environment, 78(8), 5635-5651. doi:10.1007/s10064-019-01480-8.
Shoaei Z. and Sassa K., 1993. Mechanism of landslides triggered by the 1990 Iran earthquake: Bull. Disas. Prev. Res. Kyoto University, Vol. 43, Part 1, No. 372, P. 1-29.
Sabokbar, H.F., Roodposhti, M.S., Tazik, E., 2014. Landslide susceptibility mapping using geographically-weighted principal component analysis. Geomorphology. 226:15–24.
Tang, R., Fan, X., Scaringi, G., Xu, Q., van Westen, C. J., Ren, J., Havenith, H.-B., 2019. Distinctive controls on the distribution of river-damming and non-damming landslides induced by the 2008 Wenchuan earthquake. Bulletin of Engineering Geology and the Environment, 78(6), 4075-4093. doi:10.1007/s10064-018-1381-8.
Tatar, M., Hatzfeld, D., 2009. Microseismic evidence of slip partitioning for the Rudbar-Tarom earthquake (Ms 7.7) of 1990 June 20 in NW Iran. Geophysical Journal International, 176 (2), 529-541. doi:10.1111/j.1365-246X.2008.03976. x.
Tatard L, Grasso JR, Helmstetter A, Garambois S., 2010. Characterization and comparison of landslide triggering in different tectonic and climatic settings. Journal of Geophysical Research: Earth Surface, 115(F4). doi:10.1029/2009jf001624.
Tong, X., Sandwell, D.T., Fialko, Y., 2010. Coseismic slip model of the 2008 Wenchuan earthquake derived from joint inversion of interferometric synthetic aperture radar, GPS and field data. J Geophys Res 115(B04314). https://doi.org/10.1029/2009JB006625.
Valagussa, A., Marc, O., Frattini, P., Crosta, G.B., 2019. Seismic and geological controls on earthquake-induced landslide size. Earth and Planetary Science Letters, 506, 268-281. doi:https://doi.org/10.1016/j.epsl.2018.11.005.
Van Westen, C.J., Van Asch. TWJ., Soeters, R., 2006. Landslide hazard and risk zonation—why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167-184. doi:10.1007/s10064-005-0023-0.
Wang, F., Fan. X., Yunus, AP., Siva Subramanian, S., Alonso-Rodriguez, A., Dai, L., Huang, R., 2019. Coseismic landslides triggered by the 2018 Hokkaido, Japan (Mw 6.6), earthquake: spatial distribution, controlling factors, and possible failure mechanism. Landslides, 16(8), 1551-1566. doi:10.1007/s10346-019-01187-7
Weisberg, S., 2005. Applied linear regression (3rd ed.). Hoboken, NJ: John Wiley & Sons, Inc.
Wilson, RC., Keefer, D.K., 1983. Dynamic analysis of a slope failure from the 1979 Coyote Lake, California earthquake. Seismological Society of America Bulletin 1983;73(3):863–77.
Xu, C., Dai, FC., Yao, X., 2009. Incidence number and affected area of Wenchuan earthquake-induced landslides. Science & Technology Review, 27(11): 79-81.
Xu, C., Xu, X., 2012. Comment on “Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China” by Shengwen Qi, Qiang Xu, Hengxing Lan, Bing Zhang, Jianyou Liu [Engineering Geology 116 (2010) 95–108]. Engineering Geology, 133-134, 4042. doi:https://doi.org/10.1016/j.enggeo.2012.02.017.
Xu, C., Dai, F., Xu, X., Lee, YH., 2012. GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145-146, 70-80. doi:https://doi.org/10.1016/j.geomorph.2011.12.040.
Xu, C., Xu, X., Yao, X., Dai, F., 2013a. Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11. doi:10.1007/s10346-013-0404-6
Xu, C., Xu, X., Dai, F., Wu, Z., He, H., Shi, F., Xu, S., 2013b. Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Natural Hazards, 68 (2), 883-900. doi:10.1007/s11069-013-0661-7.
Xu, C., Xu, X., 2014. Statistical analysis of landslides caused by the Mw 6.9 Yushu, China, earthquake of April 14, 2010. Natural Hazards, 72(2), 871-893. doi:10.1007/s11069-014-1038-2.
Xu, C., Xu, X., Pourghasemi, HR., Pradhan, B., Iqbal J., 2014. Volume, gravitational potential energy reduction, and regional centroid position change in the wake of landslides triggered by the 14 April 2010 Yushu earthquake of China. Arabian Journal of Geosciences, 7 (6), 2129-2138. doi:10.1007/s12517-013-1020-4.
Xu, C., Xu, X., Shyu, JBH., 2015. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology, 248, 77-92. doi:https://doi.org/10.1016/j.geomorph.2015.07.002.
Xu, C., Xu, X., Shen, L., Yao, Q., Tan, X., Kang, W., Li, K., 2016. Optimized volume models of earthquake-triggered landslides. Scientific Reports, 6(1), 29797. doi:10.1038/srep29797.
Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA, 72(1), 1-12. doi:https://doi.org/10.1016/j.catena.2007.01.003.
Yang, H., 2013. The Case for Being Automatic: Introducing the Automatic Linear Modeling (LINEAR) Procedure in SPSS Statistics. Multiple Linear Regression Viewpoints, 39.
Yassaghi, A., Salari-Rad, H., Kanani-Moghadam, H., 2005. Geomechanical evaluations of Karaj tuffs for rock tunneling in Tehran–Shomal Freeway, Iran. Engineering Geology, 77 (1), 83-98. doi:https://doi.org/10.1016/j.enggeo.2004.08.003.
Yin, Y., Wang, F., Sun, P., 2009. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6(2), 139-152. doi:10.1007/s10346-009-0148-5.
Youssef, AM., Maerz, NH., Hassan AM., 2009. Remote sensing applications to geological problems in Egypt: case study, slope instability investigation, Sharm El-Sheikh/Ras-Nasrani Area, Southern Sinai. Landslides, 6(4), 353. doi:10.1007/s10346-009-0158-3.
Youssef AM., Al-Kathery M., Pradhan, B., 2015a. Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosci J 19(1):113–134.
Youssef, AM., Pradhan B., Jebur, MN., El-Harbi, HM., 2015b. Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ Earth Sci 73:3745–3761.
Youssef, A.M., Pourghasemi, H.R., Pourtaghi, Z.S., Al-Katheeri, M.M., 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5), 839-856. doi:10.1007/s10346-015-0614-1.
Zhang, L., Chen, G., Wu, Y., Jiang, H., 2016. Stochastic ground-motion simulations for the 2016 Kumamoto, Japan, earthquake. Earth, Planets and Space, 68(1), 184. doi:10.1186/s40623-016-0565-3.