بهسازی خاک‌های ماسه‌ای با رسوب زیستی کربنات کلسیم و فاکتورهای موثر بر آن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشگاه تربیت مدرس، دانشکده علوم پایه، گروه زمین شناسی مهندسی

2 دانشیار دانشگاه تربیت مدرس، دانشکده علوم پایه، گروه زمین شناسی مهندسی

3 دانشیار دانشگاه تربیت مدرس، دانشکده علوم زیستی، گروه بیوشیمی

4 استادیار،‌ گروه زمین‌شناسی مهندسی دانشکده علوم پایه دانشگاه تربیت مدرس nikudelm@yahoo.com

چکیده

رسوب زیستی کلسیت (MICP) روش نسبتا سازگار با محیط زیست و مناسب برای بهسازی خاک است. این روش در اصل، بکارگیری شبکه­ای از واکنش­های شیمیایی است که برخی از این فعل و انفعالات توسط فعالیت­های زیستی کنترل شده و محصولات جنبی آنها امکان بهبود در ویژگی­های مهندسی خاک را فراهم می­آورند. برای انجام بهسازی زیستی، جمعیت برجای میکروبی با تزریق باکتری اوره آز مثبت، ازدیاد یافته و سپس واکنش کننده­های سیمانی به خاک، تزریق می­شوند. در این مقاله فاکتورهایی که MICP در خاک را تحت تاثیر قرار می­دهند، بطور خلاصه بررسی شده اند. فاکتورهای مختلفی شامل ریز مغذی­ها، نوع باکتری، انطباق هندسی باکتری، تراکم سلول باکتری، دما، غلظت واکنش کننده­ها، pH و روش تزریق مورد بررسی قرار گرفتند. این فاکتورها برای پیشرفت موفقیت‌آمیز MICP ضروری هستند. علاوه بر این یکسری آزمایش‌های اولیه برای بررسی پتانسیل کاربرد این روش جهت بهبود مقاومت برشی و کاهش تراوایی ماسه انجام شد و طی آن مواد، روش­ها و فرایندهای عملی انجام آزمایش شرح داده شده است. نتایج نشان داد که طی بهسازی با MICP ضمن رسوب کلسیت سرعت موج برشی تا حدود 1000 متر بر ثانیه و مقاومت فشاری تک محوری تا حدود 300 کیلوپاسکال افزایش یافته و تراوایی نیز کاهش قابل ملاحظه­ای یافته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Biological improvement of sandy soil by microbial induced carbonate precipitation and the affecting factors

نویسندگان [English]

  • Karim Roshan Bakht 1
  • Mashaallah Khamehchian 2
  • Reza hasan Sajjedi 3
  • Mohammadreza Nikudel 4
1 Ph.D. student, Department of Engineering Geology, Faculty of Science, Tarbiat Modares University
2 Associate Professor, Department of Engineering Geology, Faculty of Science, Tarbiat Modares University
3 . Associate Professor, Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University
4 Assistant professor, Department of Engineering Geology, Tarbiat Modares University, nikudelm@modares.ac.ir
چکیده [English]

Microbial-induced calcite precipitation (MICP) is a relatively green and sustainable soil improvement technique. It refers to a chemical reaction network that is managed and controlled within soil through biological activity and whose byproducts alter the engineering properties of soil.To treat soil, first, the microbial population in-situ is augmented by the injection of additional urease positive bacteria and then reagents are added. This paper provides an overview of the factors affecting the MICP in soil. Several factors including nutrients, bacteria type, geometric compatibility of bacteria, bacteria cell concentration, fixation and distribution of bacteria in soil, temperature, reagents concentration, pH, and injection method are introduced. These factors were found to be essential for promoting successful MICP soil treatment. Furthermore, a preliminary laboratory test was carried out to investigate the potential application of the technique in improving the strength and impermeability of a sand specimen and utilized techniques, materials, methods and empirical process during the test are explained. The results showed that as a result of the calcite precipitation, shear wave velocity increased up to 1000m/s and UCS strength increased to about 300Kpa and permeability of soil decreased significantly upon MICP treatment.

کلیدواژه‌ها [English]

  • Microbial-induced calcite precipitation
  • Bio grout
  • Biological Improvement
 
ASTM D 2166, 2006. Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, Annual book of ASTM standards, West Conshohocken.
ASTM D421-87, 2007. Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants, Annual book of ASTM standards. West Conshohocken.
ASTM D422-63, 2007. Standard Test Method for Particle-Size Analysis of Soils, Annual book of ASTM standards, West Conshohocken.
ASTM D4253-00, 2006. Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table, Annual book of ASTM standards, West Conshohocken.
ASTM D4254-00, 2006. Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, Annual book of ASTM standards, West Conshohocken.
ASTM D854-10, 2007. Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, Annual book of ASTM standards, West Conshohocken.
A. Qabany, A., Mortensen, B., Martinez, B., Soga, K., DeJong, J., 2011. Microbial Carbonate Precipitation Correlation of S-Wave Velocity with Calcite Precipitation. Proceedings of Geo-Frontiers, pp. 3993-4001.
Achal, V., Pan, X., Özyurt, N., 2011. Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering, 37: 554-559.
Alvarado, D., 2009. Bio- mediated soil improvement: cementation of unsaturated sand samples. Ph D thesis, Arizona State University.
Barkouki, T., Martinez, B., Mortensen, B., Weathers, T., De Jong, J., Ginn, T., Spycher, N., Smith, R., Fujita, Y., 2010. Forward and Inverse Bio- Geochemical Modeling of Microbially Induced Calcite Precipitation in Half-Meter Column Experiments. Transport in Porous Media. 90: 23-39.
Castagna, J.P., Batzle, M.L., Kan, T.K., 1993. Rock physics—the link between rock properties and AVO response .In Offset-Dependent Reflectivity—Theory and Practice of AVO Analysis, Society of Exploration Geophysicists, pp. 124–157.
Castanier, S., Métayer-Levrel, G. Le., Perthuisot, J.-P., 1999. Carbonates precipitation and limestone genesis  the microbiogeologist point of view. Sedimentary Geology, 126: 9-23.
De Muynck, W., Debrouwer, D., De Belie, N., Verstraete, W., 2008. Bacterial carbonate precipitation improves the durability of cementitious materials. Cementand Concrete Research, 38: 1005-1014.
De Muynck, W., Verbeken, K., De Belie, N., Verstraete, W., 2010. Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone.Ecological Engineering, 36: 99-111.
DeJong, JT, Mortensen, B.M., Martinez, B.C., Nelson, D.C., 2010. Biomediated soil improvement. Ecological Engineering, 36: 197-210.
DeJong, J.T., Fritzges, M.B., Nüsslein, K., 2006. Microbially Induced Cementation to Control Sand Response to Undrained Shear. Journal of Geotechnical and Geoenvironmental Engineering,132: 1381-1392.
Gurbuz, A., Sari, Y.D., Yuksekdag, Z.N., Cinar, B., 2011. Cementation in a matrix of loose sandy soil using biological treatment method. African Journal of Biotechnology, 10: 7432-7440.
Hammes, F., Boon, N., de Villiers, J., Verstraete, W., Siciliano, S.D., 2003. Strain-specific ureolytic microbial calcium carbonate precipitation. Applied and Environmental Microbiology, 69: 4901-9.
Harkes, M.P., van Paassen, L.A., Booster, J.L., Whiffin, V.S., van Loosdrecht, M.C.M., 2010. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecological Engineering, 36: 112-117.
Holtz, R.D., Kovacs, W.D., 1981. An Introduction to Geotechnical Engineering. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 733.
Ivanov, V., Chu, J., 2008. Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ," Reviews in Environmental Science and Biotechnology.7: 139-153.
Li, W., Liu, L.P., Zhou, P.P., Cao, L., Yu, L.J., Jiang, S.Y., 2011. Calcite precipitation induced by bacteria and bacterially produced carbonicanhydrase. Current Science, 00:, pp. 502-508.
Okwadha, G.D., Li, J., 2010. Optimum conditions for microbial carbonate precipitation. Chemosphere, 81: 1143-8.
Martinez, B.C., Barkouki, T.H., DeJong, J.D., Ginn, T.R., 2011. Upscaling of Microbial Induced Calcite Precipitation in 0.5m Columns Experimental and Modeling Results. Proceedings of Geo-Frontiers, pp. 4049- 4059.
Mitchell, J.K., Santamarina, J.C., 2005. Biological Considerations in Geotechnical Engineering," Journal of Geotechnical and Geoenvironmental Engineering. 131: 1222-1233.
Mobley, H.L., Island, M.D., Hausinger, R.P., 1995. Molecular biology of microbial ureases. Microbiological Reviews. 59: 451-80.
Nemati, M., Voordouw, G., 2003. Modification of porous media permeability, using calcium carbonate produced enzymatically in situ. Enzyme and Microbial Technology, 33: 635-642.
Nemati, M., Greene, E.A., Voordouw, G., 2005. Permeability profile modification using bacterially formed calcium carbonate: comparison with enzymic option. Process Biochemistry, 40: 925-933.
Ritvo, G., Dassa, O., Kochba, M., 2003. Salinity and pH effect on the colloidal properties of suspended particles in super intensive aquaculture systems. Aquac. 218: 379-386.
Roger Arun D’ Aquino Henriques, 2011. Estudio Relativo al Hormigón Bacteriano: Fabricacióny Potenciales Campos de Aplicación. Tesis de Master, Universitat Politecnica de Catalunya.
Ruyt, M.V.d., Zon, W.V.d., 2009. Biological in situ reinforcement of sand in near-shore areas. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering., vol. 162, pp. 81-83.
Sarda, D., Choonia, H., Sarode, D., Lele, S., 2009. Biocalcification by Bacillus pasteurii urease: a novel application. Journal of Industrial Microbiology and Biotechnology, 36: 1111-1115.
Shirakawa, M.A., Kaminishikawahara, K., Moacyr, J.V., Kahn, H., Futai, M., 2011. Sand bioconsolidation through the precipitation of calcium carbonate by two ureolytic bacteria. Materials Letters, 65: 1730–1733.
Stocks-Fischer, S., Galinat, J.K., Bang, S.S., 1999. Microbiological precipitation of CaCO3. Soil Biology and Biochemistry, 31: 1563-1571.
Torkzaban, S., Tazehkand, S.S., Walker, S.L., Bradford, S.A., 2008. Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry. Water Resources Research, 44: p. W04403.
Whiffin, V.S., van Paassen, L.A., Harkes, M.P., 2007. Microbial carbonate precipitationas a soil improvement technique. Geomicrobiology Journal, 25(5): 417–423